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Useful links:

Manual https://github.com/Normaliz/Normaliz/blob/master/doc/Normaliz.pdf
Git Hub repository https://github.com/Normaliz/Normaliz

Home page https://www.normaliz.uni-osnabrueck.de/

Docker repository https://hub.docker.com/r/normaliz/normaliz/

Online exploration https://mybinder.org/v2/gh/Normaliz/NormalizJupyter/master
Support mailto:normaliz@uos.de

Mailing list normaliz-subscribe@list.serv.uos.de

For some entries we mention example input files: example/small.in refers to the file small.in
in the subdirectory example of the Normaliz directory.
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1 Introduction

Normaliz is a tool for discrete convex geometry. It computes several data of polyhedra and
lattice points in them. The names of the Normaliz input types and computation goals are
descriptive and self explaining. We recommend the user to experiment with the examples in
the directory example. A large part of the manual is in tutorial style.

Ways to run Normaliz:
1. in a terminal of Linux, MacOS or MS Windows,
2. in a Docker container (effectively a Linux terminal),
3. in the GUI interface jNormaliz,

4. interactively via the Python interface PyNormaliz (see Appendix E of the Normaliz
manual).

Moreover, Normaliz is used by several other packages, explicitly or implicitly. In this refer-
ence we assume that Normaliz is run in a terminal.

For a deeper understanding one must note the following. The output depends to some extent
on the types of input and of computation that can be homogeneous or inhomogeneous:

1. Homogeneous input types define cones and lattices.
2. Inhomogeneous input types define polyhedra and an affine lattices.

For the computation, inhomogeneous input is homogenized, and the polyhedron and the affine
lattice are selected by the dehomogenization. The computation is inhomogeneous if a deho-
mogenization is defined. Polytopes, i.e., bounded polyhedra, can be defined by homogeneous
input if one adds a grading, or, as expected, by inhomogeneous input. These two approaches
are almost equivalent.



2 Command line

Normaliz is run in a terminal. The format of the command line is
normaliz [options] <project>

project defines the input file <project.in. The output files are <project>.<suffix>. The
main out put file is <project>.out. Depending on your path settings and the place where
normaliz is installed you may have to prefix normaliz by a path to it.

Options can be long options starting with - - or short options, a single letter or number prefixed
by -. Short options can be bundled into a string. A special case is - X, setting the parallelization.
The order of options and <project> is irrelevant.

Examples, assuming that the Normaliz directory is the working directory and normaliz (or
normaliz.exe) resides in it, MacOs or Linux:

./normaliz -c example/small

./normaliz -c -x=16 example/A553

For MS Windows the equivalent commad lines are

normaliz.exe -c example\small

normaliz.exe -c -x=16 example\A553




3 Input

The input file

<project>.in

contains: (i) the definition of the ambient space, (ii) the algebraic number field in the case of
algebraic polyhedra, (iii) the definition of cones, polyhedra and lattices by generators or con-
straints, (iv) options for computation goals and algorithmic variants, (v) numerical parameters

for certain computations, (vi) a polynomial for certain computations. One can insert C style
comments \x. . .*/ between input items.

IAmbient space|
[Rational numbers|

|IAlgebraic numbers|

%

(Tabular and symbolic constraints|

\Grading and dehomogenization|

IPolynomials|

INumerical parameters|

[Types for precomputed datal

|IAdditional input types|

Input types can be mixed with some obvious restrictions. Roughly speaking, Normaliz forms
the cone defined by the generators and intersects it with the cone defined by the constraints.
The same applies to lattices. See the manual for a more precise description.



3.1 Ambient space

The first line of the input file sets the dimension of the ambient space:
amb_space <d>

or

amb_space auto

auto is only allowed if the first item, for which the dimension must be known, is a formatted
vector or matrix.

3.2 Rational numbers

All standard formats can be used: integers, fractions, decimal fractions, standard floating point
notation. Some input types accept only integers:

lattice cone_and_lattice offset open_Tfacets
congruences inhom_congruences rees_algebra lattice_ideal
grading dehomogenization signs strict_signs

3.3 Algebraic numbers

For algebraic polyhedra the definition of the number field must follow the definition of the
ambient space:

number_field min_poly (<poly>) embedding [<center> +/- <radius>]

<poly> is a polynomial with rational coefficients (integers or fractions) in one indeterminate,
the field generator. The latter is named by a single letter different from e and x. The zero of
the minimal polynomial is located in the interval <center> &+ <radius>.

Example:

number_field min_poly (a”2 - 5) embedding [ 2 +/- 1]

An algebraic number is a sum of terms, and each term is of type <coeff>[*]<gen>"<exp>
with the usual simplifications for the exponents 0 and 1. Examples:

1/2*xa”2+a-1 5a-6

Example: example/icosahedron-v.in

The following input types are NOT allowed for algebraic polytopes:

lattice strict_inequalities strict_signs open_Tfacets
cone_and_lattice inhom_congruences lattice_ideal offset
congruences hilbert_basis_rec_cone rees_algebra rational_lattice

rational_offset

put



3.4 Vectors

A plain vector is given by

<T>

<X>

<T> denotes the type and <x> is the vector itself. The entries are separated by spaces. The num-
ber of components is determined by the type of the vector and the dimension of the ambient
space. It can be sparse, given by

sparse <entries>;

where <entries> is a sequence of pairs <c>:<v>. In each pair <c> is the index of a co-
ordinate and <v> is its value. <c> can also stand for a range of coordinates in the form
<first>..<last>. The concluding semicolon is mandatory.

A formatted vector is given by

<T>

[<x>]

where <x> is a sequence of entries separated by spaces, commas or semicolons.
A special vector is

unit_vector <n> represents the n-th unit vector in R¢ where n is the number given by <n>.

Examples:
amb_space 3 amb_space 3 amb_space 3 amb_space auto
grading grading sparse grading grading
001 3:1; unit_vector 3 [0, 0,1]

Trput



3.5 Matrices

A plain matrix is built as follows:

<T> <m>

<x_1>

<X_m>

<T> is the type and <m> the number of rows, the latter given by <x_1>...<x_m>. The number
of columns is defined by the value of amb_space and the type.

The matrix can be transposed:

<T> transpose <c>
<x_1>

<X_m>

with <c> as the number of entries of each row of the input and <x_1>...<<x_m> are the
columns of the resulting matrix. The number of rows of the input is calculated from the
value of amb_space and the type.

Both matrices and transposed matrices can be sparse. The keyword sparse> follows <m> or
<C>.

A formatted matrix is built as follows:

<T>
[ [<x_1>]

[<x_m>] ]

It can also be transposed.
The unit matrix can be given to every input type that expects a matrix:
unit_matrix

The number of rows is defined by amb_space and the type of the matrix, as usual.

Examples (with amb_space 3 or amb_space auto in the formatted case):

inequalities 4 inequalities inequalities transpose 4
-1 02 [ [-1 0 2], -11 2 -2

1 11 [ 1 11], 01 -3 -1

2 -34 [ 2 -3 4], 21 4 6

-2 -16 [-2 -1 6] 1

npu Top)



3.6 Generators

cone is a matrix with d columns. Every row represents a vector, and they define the cone
generated by them. example/2cone.in

subspace is a matrix with d columns. The linear subspace generated by the rows is added to
the cone. example/normface.in

polytope isamatrix with d — 1 columns. It is internally converted to cone extending each row
by an entry 1.This input type automatically sets NoGradingDenom and defines the grading
(0,...,0,1). Not allowed in combination with inhomogeneous types. example/polytope.in

cone_and_lattice The vectors of the matrix with d columns define both a cone and a lattice.
If subspace is used in combination with cone_and_lattice, then the sublattice gener-
ated by its rows is added to the lattice generated by cone_and_lattice. example/A443.in

lattice is a matrix with d columns. Every row represents a vector, and they define the lattice
generated by them. example/3x3magiceven_lat.in

vertices isamatrix with d+ 1 columns. Eachrow (py,...,pa4,q), g > 0, specifies a generator
of a polyhedron (not necessarily a vertex), namely

P1 p
vi:<_7-"7_n); Pi€@7q€Q>07
q q

Note: vertices cone and subspace together define a polyhedron. If vertices is
present in the input, then the default choices for cone and subspace are the empty
matrices. example/icosahedron-v.in

npu Top)



3.7 Constraints

Homogeneous constraints:

inequalities is a matrix with d columns. Every row (&1,...,&;) represents a homogeneous
inequality
Eixi 4+ +8ixg >0

for the vectors (xq,...,x4) € R?. example/Condorcet.in

nonnegative represents a system of inequalities cutting out the positive orthant.
example/Condorcet.in

equations is a matrix with d columns. Every row (&, ...,&;) represents an equation

§1x1—|—'-~—|—§dxd:O

for the vectors (x1,...,x;) € R?. example/3x3magic.in
congruences is a matrix with d + 1 columns. Eachrow (&, ..., &y, c) represents a congruence

Eiz1+--+&1zg=0 modec, &i,c €Z,

for the elements (zj,...,z4) € Z¢. example/3x3magiceven.in

Inhomogeneous constraints:

inhom_inequalities is a matrix with d 4+ 1 columns. We consider inequalities
Sixi+-+8axg=m,  equivalently, S+ +Euxg+(—1) =0,

represented by the input vectors (&;,...,E;,—1n). example/icosahedron-h.in
inhom_equations is a matrix with d 4 1 columns. We consider equations

Exi 4+ Exg=n, equivalently, Six1+--+8ixg+(—n) =0,

represented by the input vectors (&;,...,E;,—n).
example/truncated_dodecahedron_dual.in

inhom_congruences We consider a matrix with d + 2 columns. Each row (&y,...,&;,—n,¢)
represents a congruence

Eizi+-+&zg=m modec, &i.n,ce,

for the elements (zj,...,z4) € Z¢. example/ChineseRemainder.in

If there are no cone generators or inequalities, Normaliz automatically assumes the sign in-
equalities defining the positive orthant positive orthant. This behavior can be broken by an
empty matrix inequalities 0.

put



3.8 Tabular and symbolic constraints

constraints <n> allows the input of <n> equations, inequalities and congruences in a format
that is close to standard notation. As for matrix types the keyword constraints is
followed by the number of constraints. If (&;,...,&,) is the vector on the left hand side
and 7 the number on the right hand side, then the constraint defines the set of vectors
(x1,...,%g) such that the relation

§1X1—F"'+-§dxd rel n

is satisfied, where rel can take the values =, <, >, <, > with the represented by input
strings =, <=,>=,<,>, respectively.

A further choice for rel is ~. It represents a congruence = and requires the additional
input of a modulus: the right hand side becomes 1 (c). It represents the congruence

Eixi+...6xg=n  (mod c).

A right hand side # 0 makes the input inhomogeneous, as well as the relations < and
>. Strict inequalities (not allowed for algebraic polyhedra) are always understood as
conditions for integers. So

Six1 4+ 8xg <M

is interpreted as
§1x1—|—...§dxd <n-1.

Examples:

102=5 10 -2>6 123~5(12)

example/ChF_8_1024.in, example/CondorcetRange.in

constraints <n> symbolic where <n> is the number of constraints in symbolic form that
follow.
Symbolic constraints are given in traditional mathematical form. Note that every sym-
bolic constraint (including the last) must be terminated by a semicolon. The left and
right hand side can be affine-linear expressions in the coordinates given by x<[i>]
where <i> varies between 1 and d.
The interpretation of homogeneity follows the same rules as for tabular constraints.
Examples

x[1] + 2x[3] = 5; x[1] >= x[2] + 6; x[1] + 2x[2] ~ 5 - 3x[]3] (12);

example/cube_3.in, example/NumSemi.in

Trput
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3.9 Grading and dehomogenization

grading is a vector of length d representing the linear form that gives the grading. (Special
rules for lattice ideal input.) example/3x3magiceven.in

total_degree is the grading with all coordinates equal to 1. example/Condorcet.in

dehomogenization is a vector of length d representing the linear form that gives the deho-
mogenization. example/600cell-dual.in

3.10 Polynomials

For the computation of weighted Ehrhart series and integrals Normaliz needs the input of a
polynomial with rational coefficients:

polynomial <poly expression>

The polynomial is first read as a string. For the computation the string is converted by the
input function of CoCoALib. Therefore any string representing a valid CoCoA expression is
allowed. However the names of the indeterminates are fixed: x[11],...,x[<d> where dN>] is
the value of amb_space. The polynomial must be concluded by a semicolon.

Example:

1/2x((x[1] + 2+x[2])"2 - x[3])

example/j462.in

3.11 Numerical parameters

expansion_degree <n> where <n> is the number of coefficients in a series expansion to be
computed and printed.

nr_coeff_quasipol <n> where <n> is the number of highest coefficients in a quasipolyno-
mial to be printed.

face_codim_bound <n> where <n> is the bound for the codimension of the faces to be com-
puted.

decimal_digits <n> where <n> sets the precision to 10~ (for computation with signed de-
composition).

block_size_hollow_tri <n> sets the block size for distributed computation to <n>.

npu
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3.12 Types for precomputed data

Precomputed types are used for the recycling of data from previous computations, namely ex-
treme rays and support hyperplanes; furthermore, the coordinate transformations represented
by the generated sublattice (or subspace) and the maximal subspace contained in the cone.
The latter are only required if they are different from the default values Z¢ (or RY) and {0},
respectively.

extreme_rays is a matrix with d columns.

maximal_subspace is a matrix with d columns.

generated_lattice is a matrix with d columns.

support_hyperplanes is a matrix with d columns.

Further admitted types for precomputed data: grading, dehomogenization.

example/InhomIneqg_prec.in

Trput
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3.13 Additional input types

rees_algebra is a matrix with d — 1 columns. It is internally converted to type cone in two
steps: (i) each row is extended by an entry 1 to length d. (i1) The first d — 1 unit vectors
of length d are appended. Not allowed in combination with inhomogeneous types.

rational_lattice is a matrix with d columns. Its entries can be fractions. Every row repre-
sents a vector, and they define the sublattice of Q7 generated by them.

saturation is a matrix with d columns. Every row represents a vector, and they define the
lattice U N Z¢ where U is the subspace generated by them. (If the vectors are integral,
then U NZ¢ is the saturation of the lattice generated by them.)

signs is a vector with d entries in {—1,0,1}. It stands for a matrix of type inequalities
composed of the sign inequalities x; > O for the entry 1 at the i-th component and the

inequality x; < O for the entry —1. The entry 0 does not impose an inequality.
excluded_faces is a matrix with d columns. Every row (&;,...,&,;) represents an inequality

Eixp+--+Euxg >0

for the vectors (xp,...,xq) € R?. 1t is considered as a homogeneous input type though
it defines inhomogeneous inequalities. The faces of the cone excluded by the inequali-
ties are excluded from the Hilbert series computation, but excluded_faces behave like
inequalities in almost every other respect.

offset is a vector with d integer entries. It defines the origin of the affine lattice.

rational_offset is a vector with d rational entries. It defines the origin of the rational affine
lattice.

strict_inequalities is a matrix with d columns. We consider inequalities

§1x1—|—~~—l—§dxd > 1,

represented by the input vectors (&;,...,&y).
strict_signs is a vector with d components in {—1,0,1}. It is the “strict” counterpart to
signs. An entry 1 in component i represents the inequality x; > 0, an entry —1 the
opposite inequality, whereas 0 imposes no condition on x;.
inhom_excluded_faces is a matrix with d + 1 columns. Every row (&i,...,&;,—1) repre-
sents an inequality
Six1 4+ 8xg > M

for the vectors (x1,...,x;) € R%. The faces of the polyhedron excluded by the in-
equalities are excluded from the Hilbert and Ehrhart series series computation, but
inhom_excluded_faces behave like inhom_inequalities in almost every other re-
spect.

hom_constraints for the input of equations, non-strict inequalities and congruences in the
same format as constraints, except that these constraints are meant to be for a homo-
geneous computation. It is clear that the left hand side has only d — 1 entries now. Also
allowed for symbolic constraints.

13



projection_coordinates Itis a 0-1 vector of length d.
The entries 1 mark the coordinates of the image of the projection. The other coordinates
give the kernel of the projection.

open_facets is a vector of length d with entries € {0,1}. (See manual)

hilbert_basis_rec_cone is a matrix with d columns. It contains the precomputed Hilbert
basis of the recession cone.

lattice_ideal is a matrix with d columns containing the generators of the lattice ideal in the
Laurent polynomial ring.

apu
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4 Computation

IComputation goals|

IMajor algorithmic variants|

IMinor algorithmic variants|

4.1 Integer type

Normaliz chooses the integer type for computations automatically. But there can be reasons
for the user to fix it:

BigInt, -B forces Normaliz to do all computations in indefinite precision.

LongLong forces 64 bit integers in all computations.

The probability that Normaliz does not notice an overflow in 64 bit computations is extremely
small, but in critical cases it may be wise to ask for Bigint.

[Computation| [Top|
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4.2 Computation goals

Most computation goals include Sublattice and SupportHyperplanes, and there are many
implications between them. If you are in doubt whether your desired data will be computed,
add an explicit computation goal.

If the user does not specify any computation goal, Normaliz tries to compute the following:

(1) certain computations based on the dual algorithm;
(2) Projection or ProjectionFloat applied to parallelotopes;
(3) computations done completely by symmetrization or signed decomposition.

Computation gaols by themes:

ISupport hyperplanes and extreme rays|

IHilbert basis and lattice points|

I[Enumerative data, volumes and integrals|

(Iriangulation|
IFace structurel
IAutomorphism groups|

IAdditional computation goals|

4.2.1 Support hyperplanes and extreme rays

SupportHyperplanes, -s triggers the computation of support hyperplanes and extreme rays.
example/cyclicpolytope30-15.in

IntegerHull, -H computes the integer hull of a polyhedron. Implies the computation of the
lattice points in it. More precisely: in homogeneous computations it implies DeglElements,
in inhomogeneous computations it implies HilbertBasis. example/InhomIneqIH.in

ProjectCone Normaliz projects the cone defined by the input data onto a subspace generated
by selected coordinate vectors and computes the image with the goal SupportHyperplanes.
example/small_proj.in

For the following we only need the support hyperplanes and the lattice:

IsGorenstein, -G : is the monoid of lattice points Gorenstein? In addition to answering
this question, Normaliz also computes the generator of the interior of the monoid (the
canonical module) if the monoid is Gorenstein. (Only in homogeneous computations.)
example/5x5Gorenstein.in

[Computation goals| [Computation|
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4.2.2 Hilbert basis and lattice points

HilbertBasis, -N triggers the computation of the Hilbert basis. In inhomogeneous compu-
tations it asks for the Hilbert basis of the recession monoid and the module generators.
example/5x5.1in, example/A443.1in

IsIntegrallyClosed, -w : is the original monoid integrally closed? Normaliz stops the
Hilbert basis computation as soon as it can decide whether the original monoid contains
the Hilbert basis. Normaliz tries to find the answer as quickly as possible. This may
include the computation of a witness, but not necessarily. If you need a witness, use
WitnessNotIntegrallyClosed. example/A643.1in

DeglElements, -1 restricts the computation to the degree 1 elements of the Hilbert basis in
homogeneous computations (where it requires the presence of a grading).
example/max_polytope_cand.in

LatticePoints isidentical to DeglElements in the homogeneous case, but implies NoGradingDenom.
In inhomogeneous computations it is a synonym for HilbertBasis. example/ChF_8_1024.1in

ModuleGeneratorsOverOriginalMonoid, -M computes a minimal system of generators of
the integral closure over the original monoid. Requires the existence of original monoid
generators.

[Computation|
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4.2.3 Enumerative data, volumes and integrals

The computation goals in this section require a grading. They include SupportHyperplanes.

HilbertSeries, -q triggers the computation of the Hilbert series. example/CondorcetSemi.in

EhrhartSeries computes the Ehrhart series of a polytope, regardless of whether it is defined
by homogeneous or inhomogeneous input. In the homogeneous case it is equivalent to
HilbertSeries + NoGradingDenom, but not in the inhomogeneous case.
example/rational_inhom.1in

Multiplicity, -v restricts the computation to the multiplicity. example/CondEffPlur.in

Volume, -V computes the lattice normalized and the Euclidean volume of a polytope given
by homogeneous or inhomogeneous input (implies Multiplicity in the homogeneous
case, but also sets NoGradingDenom). example/dodecahedron-v.in

NumberLatticePoints finds the number of lattice points in a polytope. They are not stored.
example/CondorcetRange.in

The following computation goals need the input of a polynomial:

WeightedEhrhartSeries, -E makes Normaliz compute a generalized Ehrhart series.

VirtualMultiplicity, -L makes Normaliz compute the virtual multiplicity of a weighted
Ehrhart series.

Integral, -I makes Normaliz compute an integral over a polytope. Implies NoGradingDenom.
example/j462.1in

[Computation goals| [Computation|
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4.2.4 Triangulation

Triangulation, -T makes Normaliz compute, store and export the full triangulation.
example/cross2.1in

AllGeneratorsTriangulation makes Normaliz compute and store a triangulation that uses
all generators.

LatticePointTriangulation makes Normaliz compute and store a triangulation that uses all
lattice points in a polytope.

UnimodularTriangulation makes Normaliz compute and store a unimodular triangulation.

4.2.5 Face structure

FVector computes the f-vector of a polyhedron. example/icosahedron_prec.in
FaceLattice computes the set of faces.

The range can be restricted by the numerical parameter face_codim_bound. There are dual
cone we have:

DualFVector
DualFacelLattice example/cube_3_dual_fac.in

4.2.6 Automorphism groups

Automorphisms computes the integral automorphisms of rational polyhedra and the algebraic
automorphisms of algebraic polytopes. example/pythagoras_int.in

RationalAutomorphisms computes the rational automorphisms of rational polytopes.
example/pythagoras_rat.in

EuclideanAutomorphisms computes the euclidean automorphisms of rational and algebraic
polytopes. example/icosahedron-v.in

CombinatorialAutomorphisms computes ate combinatorial automorphisms of polyhedra.
example/pentagon.in

AmbientAutomorphisms computes automorphisms induce by permutations of coordinates of
the ambient space. example/A443.1in

InputAutomorphisms computes rational (or algebraic) automorphisms based solely on the
input and initial coordinate transformations. example/halfspace3inhom-input.in

[Computation goals| [Computation|
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4.2.7 Additional computation goals

Sublattice, -S (upper case S) asks Normaliz to compute the coordinate transformation to
and from the efficient sublattice.

VerticesFloat converts the format of the vertices to floating point. It implies SupportHyperplanes.
SuppHypsFloat converts the format of the support hyperplanes to floating point.
ExtremeRaysFloat does the same for the extreme rays.

WitnessNotIntegrallyClosed Normaliz stops the Hilbert basis computation as soon it has
found a witness confirming that the original monoid is not integrally closed.

ClassGroup, -C is self explanatory, includes SupportHyperplanes. Not allowed in inhomo-
geneous computations.

ConeDecomposition, -D Normaliz computes a disjoint decomposition of the cone into semi-
open simplicial cones. Implies Triangulation.

TriangulationSize, -t makes Normaliz count the simplicial cones in the full triangulation.

TriangulationDetSum Normaliz additionally sums the absolute values of their determinants.

StanleyDec, -y makes Normaliz compute, store and export the Stanley decomposition.

PlacingTriangulation combinatorially defined triangulation, see manual.

PullingTriangulation ditto.

Incidence computes the incidence of extreme rays and facets.
DualIncidence the transpose of Incidence.

IsEmptySemiopen checks whether a semiopen polyhedron is empty.

IsPointed : is the efficient cone C pointed? This computation goal is sometimes useful to
give Normaliz a hint that a nonpointed cone is to be expected.

IsDeglExtremeRays : do the extreme rays have degree 1?7 (Only in homogeneous computa-
tions.)

IsDeglHilbertBasis : do the Hilbert basis elements have degree 1?7 (Only in homogeneous
computations.)

IsReesPrimary : for the input type rees_algebra, is the monomial ideal primary to the irrel-
evant maximal ideal?

WritePreComp Computes and writes file with suffix precomp. in that can be used for the input
of precomputed data.

There are several more computation goals that are used internally by Normaliz and the com-
munication with external packages. See manual.

[Computation goals| [Computation|
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4.3 Major algorithmic variants

For several computation goals there exist more than a single algorithm in Normaliz. The
program tries to choose the best variant, but it sometimes needs help by the user.

DualMode, -d activates the dual algorithm for the computation of the Hilbert basis and de-
gree 1 elements. Includes HilbertBasis, unless DeglElements is set. It overrules
IsIntegrallyClosed.

PrimalMode, -P blocks the use of the dual algorithm.

Projection, -j chooses project-and-lift for lattice points in polytopes.
NoProjection blocks it.

Descent, -F chooses descent in the face lattice for volume computations.
NoDescent blocks it.

SignedDec chooses signed decomposition for volume computations.
NoSignedDec blocks it.

Symmetrize, -Y lets Normaliz compute the multiplicity and/or the Hilbert series via sym-
metrization (or just compute the symmetrized cone).
NoSymmetrization, -X blocks symmetrization.

KeepOrder, -k forces Normaliz to insert the generators (for generator input) or the inequali-
ties (for constraint input) in the input order.

[Computation|
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4.4 Minor algorithmic variants

ProjectionFloat, -J , project-and-lift with floating point arithmetic.

NoLLL blocks the use of LLL reduced coordinates for project-and-lift.

NoRelax blocks relaxation in project-and-lift.

Approximate, -r , approximation of rational polytopes for lattice point computation.

BottomDecomposition, -b tells Normaliz to use bottom decomposition in the primal algo-
rithm.

NoBottomDec, -o forbids Normaliz to use it.

NoSubdivision forbids the subdivision of large simplices in the primal algorithm.

Descent ExploitIsosMult chooses exploitation of isomorphism types in the descent algo-
rithm for volumes.

StrictTypeChecking forbids Normaliz to use SHA256 hash values for the identification of
isomorphism types.

DistributedComp asks for distributed computation of volumes by signed decomposition.

FixedPrecision sets fixed precision for volume computation by signed decomposition.

HSOP lets Normaliz compute the degrees in a homogeneous system of parameters and the
induced representation of the Hilbert or Ehrhart series series.

NoPeriodBound This option removes the period bound that Normaliz sets for the computation
of the Hilbert quasipolynomial (presently 10°).

NoGradingDenom forces Normaliz to keep the original grading if it would otherwise divide it
by the grading denominator. It is implied by several computation goals for polytopes.

GradingIsPositive tells Normaliz that there is no need to check the grading for positivity.
Useful in connection with SignedDec.

[Computation|
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5 Execution

Normaliz is run in a terminal. The format of the command line is
normaliz [options] <project>

project defines the input file <project.in. The output files are <project>.<suffix>. The
main out put file is <project>.out. Depending on your path settings and the place where
normaliz is installed you may have to prefix normaliz by a path to it.

Options can be long options starting with - - or short options, a single letter or number prefixed
by -. Short options can be bundled into a string. A special case is - X, setting the parallelization.
The order of options and <project> is irrelevant.

./normaliz -c example/small
./normaliz -c -x=16 example/A553
./normaliz -c example/Condorcet --HilbertSeries --NoMatricesOutput

Note that on MS Windows the slash / must be replaced by a backslash \.

All computation goals and algorithmic variants can be given as long options on the command
line. There are other options for execution and output.

--help, -? displays a help screen listing the Normaliz options.
--version displays information about the Normaliz executable.

--verbose, -c activates the verbose (“‘console”) behavior of Normaliz in which Normaliz
writes additional information about its current activities to the standard output.

-x=<T> Here <T> stands for a positive integer limiting the number of threads that Normaliz is
allowed access on your system. The default value is 8.
-x=0 switches off the limit set by Normaliz.
If you want to run Normaliz in a strictly serial mode, choose -x=1.

--ignore, -i This option disables all options in the input file.

--files, -f Normaliz writes the additional output files with suffixes gen, cst, and inv, pro-
vided the data of these files have been computed.

--all-files, -a includes Files, Normaliz writes all available output files (except typ, the
face lattice, the triangulation or the Stanley decomposition, unless these have been re-
quested).

--OutputDir=<outdir> The path <outdir>is an absolute path or a path relative to the current
directory (which is not necessarily the directory of <project>.in.)

NoExtRaysOutput suppresses the output of extreme rays in the out file.

NoHilbertBasisOutput does the same for Hilbert bases and lattice points.

NoSuppHypsOutput suppresses the output of support hyperplanes in the out file.

NoMatricesOutput restricts the out file to the “preamble”.
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6 Output

The main output file is <project>.out. However, some data are written to extra files, either
because they can be very large, or contain the data of “derived” cones. They have suffixes:

tri
aut
dec
fac
inc

proj.

contains the triangulation.

contains the automorphism group.
contains the Stanley decomposition.
contains the face lattice.

contains the (dual) incidence matrix.
out contains the projected cone.

inthull.out contains the integer hull.

symm.

out contains the symmetrized cone.

Via the option WritePreComp Normaliz can write an input file with precomputed data that can
then be read by further computations. It has the suffix

precomp.in

Moreover, there are truly optional output files that serve as a file interface. See manual.
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