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1 INTRODUCTION 

Intel® Media Server Studio provides rich set of interfaces to build different kinds of video processing 

applications. In this paper, we discuss one of them, Flexible Encode Infrastructure for High Efficiency 

Video Codec (HEVC FEI). This interface exposes low-level controls that are intended to improve the 

performance, visual quality, and flexibility of conventional SDK encoder by utilizing customer IP.  

No prior knowledge of SDK or FEI is required to read this paper. The first chapters give a general idea on 

how an application can tune a hardware-accelerated video encoder and how different controls affect 

encoding quality and performance. At the same time, this paper can be used as developer’s guide to 

build efficient transcoding pipeline. In the second half of the paper, we discuss a sample application that 

was specifically written to demonstrate HEVC FEI usage.  

This paper starts with an overview of the HEVC FEI architecture and how it is mapped to conventional 

encoder building blocks. Next, the major part of the paper describes HEVC FEI controls and their impact 

on performance and visual quality. Then we discuss performance bottlenecks typical for common 

transcoding scenarios. We finish this paper with a deep discussion of a sample application, providing 

examples of how to reuse information from the input bitstream to improve visual quality using FEI and 

how to build efficient bitrate control. 
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1.1 ACRONYMS AND ABBREVIATIONS 
BRC  Bitrate control 

CTU  Coding tree unit 

CU  Coding unit 

ENC  First part of the encoding process, including motion estimation and mode decision 

EU  Execution unit 

HME  Hierarchical motion estimation 

HW BRC Built-in driver BRC, used by conventional encoder 

LA BRC Look ahead bitrate control 

ME  Motion estimation 

MSE Mean Squared Error, a measure of distortion between source and encoded frames 

MV  Motion vector 

MVP  Motion vector predictor 

NNZ 
Number of non-zero luma transform coefficients, used as visual distortion 
approximation 

PAK  
Last part of the encoding process, including motion compensation, transform, 
quantization, and entropy coding 

QP Quantization parameter 

RDO  Rate distortion optimization 

SSC Sum of squared luma transform coefficients, used as a visual distortion approximation 
TU1, TU4, 
TU7  SDK encoder presets:: TU1 quality, TU4 balanced, TU7 speed mode 

VQ  visual quality 
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2 HEVC FEI OVERVIEW 

FEI is built on top of the conventional hardware-accelerated encoder and exposes more controls over 

internal building blocks. These controls facilitate integration of customer algorithms into the encoding 

process. In addition, FEI provides standalone preprocessing functionality that can be used to gather 

different kind of statistics about input frame (e.g., frame complexity). 

Figure 1 is a diagram of the conventional encoder. The encoding process starts with a hierarchical 

motion estimation (HME) that is done on the set or downscaled frames. Downscale ratios and the 

number of layers may differ depending on the original frame resolution and encoder settings, but in 

most cases at least two stages are present. ME starts on the smallest 16x downscaled frame, and then 

refines coarse MVs found in the first stage on a 4x downscaled frame. It concludes on the original 

resolution. After that, the encoder performs an intra-prediction stage to find the best intra-mode, and 

then makes a mode decision. Other stages are similar to FEI and conventional encoders and are not 

discussed here. 

 

 

Figure 1. Conventional encoder, where 
  IP Intra prediction 
  MD Mode decision 
  HME Hierarchical motion estimation 
  ME Motion estimation 
  T, T-1 Transform and inverse transform 
  Q, Q-1 Quantization and inverse quantization 
  COD Entropy coding 
  MC Motion compensation 

Figure 2 shows how preprocessing works. It uses the same hardware that a conventional encoder uses, 

but works significantly faster due to the reduced amount of processing. First, HME depth is limited to a 

single 4x layer followed by ME on the original resolution. Secondly, no dependencies between blocks are 

taken into account, making ME significantly faster. Finally, no actual mode decision is made here. The 

best inter-prediction partition is selected and the rest of the encoding stages, like transform and 

quantization, are completely skipped. 
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Figure 2. Preprocessing stage, also known as PreENC. MD and ME stages here are faster than in a conventional encoder. 

Figure 3 is a diagram of the FEI encoder.  In contrast to the conventional encoder, it does not have the 

HME stage and needs coarse MVs from application to do ME. (See “External MV Predictors” for details.) 

It also exposes additional controls to fine-tune motion estimation and mode decision. (See “HEVC FEI 

Controls” for details.) 

 

 

Figure 3. FEI ENCODEr. There is no HME stage. More controls over encoding process are exposed. 

Figure 4 shows a typical encoding scenario that uses the PreENC and FEI encoders (also known as the 

PreENC + ENCODE pipeline). In the first stage of this pipeline, PreENC gathers preliminary statistics 

about the input frame. Then, it is fed to the customer algorithm that computes optimal control 

parameters for the FEI encoder. In this stage, actual VQ and performance are improved. Then, the 

computed parameters are sent to the encoder. 

 

Figure 4. Encoding pipeline, PreENC+ENCODE. PreENC is used as a source of information for the customer algorithm that 
improves VQ.  

For the transcoding use case shown on Figure 5, it is possible to use information from the coded input 

stream to guide the FEI encoder in the motion estimation and mode decision stages. In this case, 

statistics about the input frame come not from the PreENC stage, but directly from the decoder. In this 
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paper, we use term Decode Stream Out (DSO) for this kind of statistics and call this pipeline DSO + 

ENCODE. (See “Decode Stream Out” for details.) 

 

Figure 5. Transcoding pipeline, DSO+ENCODE. Decode Stream is used as the source of information for the customer algorithm 
that improves VQ. 
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3 HEVC FEI CONTROLS 

In this chapter, we discuss different controls over the encoding process exposed by the HEVC FEI 

interface. This description augments the HEVC FEI Reference Manual by illustrating the impact of each 

control on visual quality and performance. It also gives some recommendations on how to use these 

controls to achieve different goals like runtime performance/quality tradeoff. 

BD rate is used as a visual quality metric. If not specified otherwise, “balanced” (TU4), a preset of the 

legacy encoder, is used as a base point for BD rate calculation. To avoid bitrate control influence, 

measurements were done in constant QP mode. Four-point RD curves were built based on the average 

PSNR, which included luma and chroma values. A positive BD rate means that HEVC FEI quality is better 

than conventional transcoding/encoding. 

Density was selected as a performance metric. In this context, it represents the number of simultaneous 

transcoding that can run on the same system in real time. A fractional part in density means that last 

channel could not achieve real time. For example, if the density is 3.5, then three channels run at 30fps 

and one runs at 15 fps.  

We evaluated 25 full HD streams with different content, including fast and slow motion, static content, 

and highly irregular scenes like waves on the water. (See a detailed description in Appendix E. Stream 

information.”) In addition, nine artificial streams were used that were generated from original content 

by applying a fade in/out affect every 25, 50, and 100 frames. Note that during encoding evaluation, no 

special tools (like weighted prediction) were used. Encoder settings were exactly the same for all 

streams in the test pool. 

Two pipelines were used:  

1. Conventional encoding from the YUV source to HEVC bitstream, based on PreENC followed by 

the ENCODE pipeline (see the “HEVC FEI Overview” chapter for details). 

2. Transcoding from the AVC or HEVC source to the HEVC bitstream, based on the ENCODE 

pipeline with additional control parameters computed from DSO (see the “Sample Application” 

chapter for details). The AVC source bitstream was encoded by x264 encoder, the HEVC source 

bitstream and the auxiliary bitstream for DSO were encoded by HM16.17 encoder. To match the 

reference lists between the HM and FEI encoders, we made minor modifications to HM. We 

used 40Mbps source streams and 5Mbps auxiliary stream. 

We used a single GOP pattern, IbBbP, where the P and middle B frames were used as reference. (The full 

test configuration is described in Appendix C. System configuration” and in Appendix D. Command 

Lines.”) 

3.1 EXTERNAL MV PREDICTORS 
The motion estimation part of a GPU-accelerated encoder has quite a limited search range. To catch 

long MVs, the encoder has to start a search in a reference frame, not from a collocated block, offsetting 

it by a motion vector predictor (MVP). A conventional encoder uses HME to find such predictors, but the 

FEI encoder relies on the application to provide them. From zero to four MVPs can be provided for each 

https://github.com/Intel-Media-SDK/MediaSDK/blob/master/doc/mediasdkhevcfei-man.pdf
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block of 16x16 pixels. Each MVP specifies the location of the search window in the reference frame and 

reference frame index.  

(See the “HEVC FEI Overview” chapter for details about HME, the “Search Window Size” chapter for 

supported search window sizes, and the “Internal MV Predictors” chapter for a list of additional internal 

MVPs.) 

MVPs can be used to achieve different goals. 

 Improve objective VQ. A mode decision made in a conventional encoder may be suboptimal. For 

example, an inter-prediction with a big MV difference may be selected instead of the more 

efficient intra-prediction or encoder may choose an inter-prediction from less efficient in the 

RDO sense location. In these cases, by providing a “good” MVP, application can prevent the 

encoder from choosing inefficient MVs. (See the “Force CTU To Intra/Inter” chapter for details 

how to force encoder to use specific prediction type.)   

 Improve performance. By using MVPs, the application can control how much time the encoder 

spends on motion estimation. A conventional encoder estimates motion for several predictors 

for each reference frame. The FEI encoder runs a motion estimation only for provided MVPs, 

and the application can limit the number of searches, leading to the single best MVP. 

 Improve subjective VQ. A conventional encoder does not use chroma channels during motion 

estimation, which in some cases may lead to visible color artifacts. Application can guide the FEI 

encoder with proper MVP to prevent such artifacts. MVP can also be useful for low-bitrate cases 

to keep the MV field even in areas with uniform textures. That, in turn, helps to improve 

subjective VQ.     

Figure 6 shows how MVP affects performance and quality for different pipelines. Three pipelines are 

shown: 

1. HEVC HW is conventional encoding. Its “balanced” TU4 preset is chosen as a reference point 

(i.e., zero BD rate). As we can see from the chart, in comparison to the ”balanced” preset 

“speed” one increases density from 3 to 12 channels and degrades VQ by 25%. 

2. PreENC+HEVC FEI. In this mode, PreENC is run on four times downsampled frames, then the FEI 

encoder is called with MVPs from the first stage. This is the slowest mode due to PreENC 

overhead, and it has the closest to conventional encoder VQ because no additional IP is present 

in this pipeline―just a simple MVP repack from PreENC to ENCODE layout. 

3. DSO+HEVC FEI. This is the most interesting case. Here, we calculate MVPs from DSO data 

extracted from auxiliary stream and feed them to FEI encoder (see the “Decode Stream Out” for 

details). Because the mode decision here has been made by the RDO-based encoder, we have 

better VQ than conventional encoder for both “balanced” and “speed” presets. For “speed” 

mode in this pipeline, the FEI encoder is significantly slower than a conventional encoder. This is 

because DSO processing is not optimized for performance, runs on CPU, and becomes a 

bottleneck for high-density cases. 
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Figure 6. Impact of MVPs on VQ and density for different pipelines. Blue – conventional encoder, gray – FEI with MVPs from 
PreENC, yellow – FEI encoder with MVPs from DSO. Higher BD rate and density is better. 

In addition to these pipelines, Figure 7 shows the HEVC FEI encoder without MVPs. This is the fastest 

mode, faster than conventional encoder by about 0.5 channel on TU4 and 1 channel on TU7, because 

the FEI encoder does less motion estimation here, just estimating internal MVPs, with no external MVPs 

and no HME stage. It also has the lowest visual quality due to significant degradation on high-motion 

streams where the encoder could not catch actual motion. Still, this mode can be used for slow-motion 

content. 
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Figure 7. Impact of MVPs on VQ and density for different pipelines. Orange line is FEI encoder without MVPs.  

Target Usage Pipeline Density BD Rate 

4 

HEVC HW 3.26 0 % 
HEVC FEI 3.68 -23.64 % 
PreENC + HEVC FEI 2.74 -0.27 % 
DSO + HEVC FEI 3.06 1.76 % 

7 

HEVC HW 12.37 -24.53 % 
HEVC FEI 13.18 -53.26 % 
PreENC + HEVC FEI 10.62 -24.36 % 
DSO + HEVC FEI 8.59 -21.80 % 

Table 1 Impact of MVPs on VQ and density for different pipelines. 

 

Table 2 shows the BD rate gain/loss for each stream from the test pool for the three pipelines described 

above, PreENC+ENCODE, DSO+ENCODE, and ENCODE without MVPs. Each pipeline was measured for 

two presets, “balanced” TU4 and “speed” TU7. As we can see, the PreENC + ENCODE pipeline has no VQ 

gain in comparison to conventional transcoding, but DSO has. It is especially noticeable on streams with 

high motion like “Jockey,” streams with a fade in/out effect. It is less, but still noticeable, on streams 

with irregular content like “riverbed.” ENCODE without MVP shows acceptable visual quality on slow-

motion streams like “Beauty” and “ducks_take_off,” but huge degradation on fast-motion streams like 

“Jockey.” “HoneyBee” with fades looks very interesting. FEI ENCODE without MVP has better VQ than 

VQ of the conventional encoder. This is because the encoder tends to use long and arbitrary motion 

vectors on such streams. Reducing the search range excludes such long MVs from consideration and the 
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encoder uses intra-prediction instead of inter-prediction with long MVs (see the chapter “Force CTU To 

Intra/Inter” for a discussion of how intra/inter prediction impacts VQ). 

 

Table 2. BD-rates for PreENC+ENCODE, DSO+ENCODE and ENCODE only pipelines. For TU7 BD rate is calculated relative to TU7 
preset of conventional encoder. Color bars that show VQ difference have the same scale for PreENC and DSO, but different for 
ENCODE only.   

(For an API description look for mfxExtFeiHevcEncMVPredictors in “Reference Manual for HEVC 

FEI.”) 

  

Sequence PreENC DSO No MVP PreENC DSO No MVP

Beauty -0.16% 0.28% -0.65% -0.26% -0.95% -3.08%

big_buck_bunny -0.24% -0.30% -6.32% -0.41% -0.67% -6.65%

blue_sky 0.11% 0.32% -60.22% -0.14% 0.05% -91.08%

Bosphorus 0.00% 0.15% -19.28% -0.48% -0.26% -20.55%

bq_terrace 0.48% 0.12% -7.09% 0.11% 0.11% -7.47%

crowd_run -0.04% -0.01% -3.44% 0.20% 0.15% -3.80%

ducks_take_off -0.04% -0.26% -0.03% -0.07% -0.28% -0.07%

elephants_dream -0.21% -0.29% -2.18% -0.39% -0.49% -2.95%

HoneyBee -0.20% -0.26% -0.75% -0.11% -0.34% -0.70%

in_to_tree 0.01% -0.06% -8.25% 0.26% 0.13% -9.09%

Jockey 0.99% 10.72% -95.50% -0.92% 9.22% -89.41%

kimono1 -0.09% 0.20% -12.13% -0.13% -0.19% -15.32%

old_town_cross 0.07% 0.02% -0.49% 0.13% 0.06% -0.79%

park_joy -0.02% 0.16% -6.48% 0.03% 0.25% -7.78%

park_scene -0.31% -0.30% -5.72% -0.08% -0.36% -6.84%

pedestrian_area -0.27% 0.08% -12.46% -0.64% -1.43% -15.83%

ReadySteadyGo -0.87% 2.62% -99.95% -0.64% 1.61% -97.30%

riverbed 0.16% 2.22% 1.79% -0.39% 1.50% 1.51%

rush_hour -0.27% -0.94% -8.62% -0.38% -1.01% -9.91%

station2 -0.05% -0.01% -12.47% -0.14% -0.11% -14.93%

sunflower 0.11% 0.33% -30.12% -0.02% -0.15% -32.72%

tears-of-steel -0.62% 1.23% -20.32% -1.26% 0.74% -22.10%

TouchDownPass 0.41% 0.44% -29.69% 0.07% -0.07% -31.29%

tractor -0.47% 0.98% -95.22% -0.32% 0.91% -109.68%

YachtRide -0.60% -0.43% -18.88% -0.46% -0.63% -20.60%

HoneyBee_fade100 -0.82% 1.83% 1.86% -2.81% 3.83% 4.49%

HoneyBee_fade50 -0.19% 5.88% 5.28% -3.06% 9.58% 9.27%

HoneyBee_fade25 -0.13% 7.06% 6.15% -3.04% 11.99% 12.14%

Jockey_fade100 -0.04% 8.09% -46.99% -1.89% 8.12% -41.24%

Jockey_fade50 -0.74% 6.64% -42.13% -2.73% 8.48% -34.19%

Jockey_fade25 -1.70% 6.14% -27.29% -3.75% 8.25% -19.48%

tractor_fade100 -0.37% 1.49% -69.13% -0.87% 1.75% -77.15%

tractor_fade50 -1.24% 2.77% -45.34% -2.02% 3.99% -45.49%

tractor_fade25 -1.79% 3.09% -31.59% -3.05% 4.53% -29.86%

Average -0.27% 1.76% -23.64% -0.87% 2.01% -24.70%

TU4 TU7

https://github.com/Intel-Media-SDK/MediaSDK/blob/master/doc/mediasdkhevcfei-man.pdf
https://github.com/Intel-Media-SDK/MediaSDK/blob/master/doc/mediasdkhevcfei-man.pdf
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3.2 INTERNAL MV PREDICTORS 
Apart from external MV predictors, FEI encoder also uses MV predictors derived from already encoded 

neighbor blocks. For streams with slow or smooth motion, that may be enough to provide good visual 

quality for the encoded stream, even without external predictors. On streams with high motion or with 

poor MVPs, it helps to improve visual quality. 

Internal MVPs are calculated for the same block size as external ones (i.e., 16x16 pixels). Three neighbor 

blocks are used, left, top, and top right. They may belong to the current or a neighbor CTU. First, two 

predictors for reference frames with zero index are calculated. The first predictor is the median from 

three neighbors, according to the AVC standard. The second predictor is one of the neighbor MVs that is 

farthest from the median. Then two more predictors are calculated for the reference frames with 

indexes 1 and 2 from reference list L0. Note that the FEI encoder supports only three reference frames 

in L0 and one in L1 list, so these MVPs cover all reference frames.  

If neighbor MVs are unavailable (for example, because block is located on the frame boundary or 

reference index of neighbor does not match to current reference), then zero MV is used. The encoder 

doesn’t check the same MV predictors twice, so if no neighbor is available, only one zero MVP is 

estimated. 

If the application can provide good MVPs, then the recommendation is to disable internal MVPs to 

speed up encoding. Disabling these internal MVPs has no impact on skip and merge modes. They will 

still be estimated. 

Figure 8 and Figure 9 show the VQ and performance impact of this control. As we can see, disabling 

internal MVPs for the PreENC + ENCODE pipeline increases performance but decreases visual quality, 

because PreENC MVPs are not good enough. For the DSO case, the result is different. Disabling of 

internal predictors improves both VQ and performance. It is because the reference encoder makes 

better mode decisions. Also, limiting the number of MVPs to search decreases the probability for the FEI 

encoder to make a suboptimal decision. 

Note that disabling both internal and external MVPs drastically decreases VQ and should never be used. 
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Figure 8. Impact of internal MVP control on VQ and density for PreENC + ENCODE pipeline 

Internal MVPs Density BD Rate 

Enabled 2.74 -0.27 % 
Disabled 2.86 -0.76 % 

Table 3. Impact of internal MVP control on VQ and density for PreENC + ENCODE pipeline 
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Figure 9. Impact of internal MVP control on VQ and density for DSO + ENCODE pipeline 

Internal MVPs Density BD Rate 

Enabled 3.06 1.76 % 
Disabled 3.21 2.29 % 

Table 4. Impact of internal MVP control on VQ and density for DSO + ENCODE pipeline 

For API description look for mfxExtFeiHevcEncFrameCtrl::MultiPredL0 and MultiPredL1 in 

“Reference Manual for HEVC FEI”. 

  

https://github.com/Intel-Media-SDK/MediaSDK/blob/master/doc/mediasdkhevcfei-man.pdf
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3.3 FORCE CTU TO INTRA/INTER 
This control is intended for use cases where the application has additional information about the 

encoded frame from which the prediction type may be deduced. For example, in the case of a screen 

capture, the CTU belonging to the just-appearing window will probably be efficiently coded as intra and 

unchanged background as inter.  

This control can improve both visual quality and performance. VQ gain comes from making an optimal 

mode decision and performance gain comes from a reduced number of prediction types to be 

estimated.  

The VQ and performance impact of this control is shown in Figure 10 and in Table 6. We used the DSO + 

ENCODE pipeline for this measurement. Force flag values were deduced from DSO data by the next 

algorithm:  

 If all CUs in the current CTU of a 5Mb auxiliary stream are intra-coded, then the force to Intra 

flag was set.    

 If all CUs in the current CTU were inter coded, then the force to Inter flag was set.  

 Otherwise, both flags were reset and the mode decision was left to the encoder.  

It is also possible to use a statistic from PreENC to deduce the prediction type, but we did not try this.  

This algorithm works only if the target bitrate is close to the bitrate of the auxiliary stream. Because of 

this, we used three target bitrates: 4Mbps, 6MBps, and 8Mbps. To eliminate the bitrate control impact 

on the results, all encoding was done in constant QP mode. Different QP values were selected for 

different streams to make the bitrate as close to the target bitrate as possible. 

As can we can from Figure 10 and Table 6, this very simple algorithm gives a noticeable VQ gain for the 

force to intra flag case. We especially achieved a big gain on streams with irregular content like 

“riverbed,” where the encoder tends to use inter prediction with long and arbitrary motion vectors. 

Good gain was also achieved on streams with fades. The faster the fade, the more significant the gain 

achieved. This is for the same reasons as the previous case. The encoder tends to use inter prediction in 

cases where intra is more efficient. 
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Figure 10. Impact of force to intra and inter flags on VQ and density for DSO + ENCODE pipeline 

Force Flags Density BD Rate 

No force flags 3.06 1.70 % 
Force CTU to Intra 2.99 2.20 % 
Force CTU to Inter 3.30 -4.73 % 

Table 5. Impact of force to intra and inter flags on VQ and density for DSO + ENCODE pipeline 
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Table 6. BD-rates for DSO + ENCODE pipeline, with enabled force to intra and inter flags compared to conventional transcoding 

On the other hand, this algorithm does not work for force to inter flag. In most cases, VQ became worse 

and on “HoneyBee,” with fades, the VQ degradation was disastrous. Analysis of the encoded streams 

showed that for some CTUs, the FEI encoder could not find an efficient inter prediction mode. For 

example, the reference encoder may use 32x32 partition, but FEI four 16x16 partitions, the reference 

encoder may use bidirectional prediction, but FEI  may use unidirectional, and the MV itself can be 

suboptimal in length and direction. That is especially noticeable on streams with fades, where MVs often 

point not to the similar texture, but to the region with similar luminosity. All of these lead to costly inter 

predictions. And the FEI encoder chooses intra prediction for such CTUs and gets good overall VQ. 

However, if force to inter flag is on, then the encoder is forced to use a suboptimal mode and loses 

visual quality. Figure 11 shows the reference encoder decision, 32x32 partition with correct MVs 

pointing to the proper location in the reference frame, a very efficient mode. In Figure 12, the same CTU 

is shown. The FEI encoder could not find a good inter prediction and switched to intra instead. The result 

Sequence Disabled ctrls ForceToIntra ForceToInter

Beauty 0.56% 0.90% -3.98%

big_buck_bunny -1.21% -1.01% -2.05%

blue_sky 0.11% 0.01% -0.82%

Bosphorus -0.09% 0.25% -2.10%

bq_terrace 0.27% 0.27% 0.40%

crowd_run 0.32% 0.21% 0.22%

ducks_take_off 0.02% -0.51% -3.76%

elephants_dream -0.36% -0.59% -2.56%

HoneyBee -0.07% -0.09% 0.35%

in_to_tree -0.20% -1.56% 0.25%

Jockey 10.20% 11.02% 5.37%

kimono1 -0.12% -0.41% -3.48%

old_town_cross -0.19% -0.48% 0.69%

park_joy 0.73% 0.80% 0.45%

park_scene -0.24% -0.28% -0.34%

pedestrian_area 0.25% -0.21% -2.09%

ReadySteadyGo 2.52% 2.11% 2.51%

riverbed 3.30% 7.79% 0.75%

rush_hour -0.30% -0.53% -2.60%

station2 -0.10% -0.17% -0.87%

sunflower 1.08% 0.93% 0.46%

tears-of-steel 0.37% -0.18% -1.26%

TouchDownPass 0.69% 1.01% 0.34%

tractor 0.76% 0.62% -0.47%

YachtRide -0.37% -0.85% -0.44%

HoneyBee_fade100 2.63% 2.79% -11.36%

HoneyBee_fade50 4.91% 4.92% -46.07%

HoneyBee_fade25 5.17% 5.16% -86.43%

Jockey_fade100 8.86% 12.67% 3.62%

Jockey_fade50 6.89% 11.54% -0.40%

Jockey_fade25 6.26% 11.21% 2.05%

tractor_fade100 1.02% 1.17% -0.65%

tractor_fade50 1.97% 3.14% -4.03%

tractor_fade25 2.01% 3.06% -2.66%

Average 1.70% 2.20% -4.73%
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is not as good as the inter prediction on Figure 11, but still acceptable. Figure 13 shows force to inter 

case, where the encoder is forced to use a bad decision, leading to a disastrous VQ loss. 

Performance gain comes from reducing the amount of work the encoder does during the mode decision. 

For forced to inter CTUs, intra estimation is completely skipped (i.e., the total number of modes the 

encoder checks decreases). Because the relative number of inter CTUs is high, the performance gain is 

also significant. 

 

Figure 11. Reference encoder, CTU 367 

 

Figure 12. FEI encoder, force flags are 
OFF, same CTU 

 

Figure 13. FEI encoder, force to inter 
flag is ON, same CTU 

 

Note that the conclusion above does not mean that force to intra flag can be used only for VQ and force 

to inter only for performance improvement, or that the FEI encoder has suboptimal motion estimation. 

It just illustrates that these flags affect both VQ and performance and that the algorithm described 

above is not good enough. A more complicated algorithm is required to get both VQ and performance 

gains. 

(For an API description, see  mfxFeiHevcEncCtuCtrl::ForceToIntra/ForceToInter in 

“Reference Manual for HEVC FEI.”) 

  

https://github.com/Intel-Media-SDK/MediaSDK/blob/master/doc/mediasdkhevcfei-man.pdf
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3.4 NUMBER OF FRAME PARTITIONS 
The HEVC FEI encoder shares compute resources with the 3D pipeline and, on a system with a high 

number of EUs, performance is usually limited by a lack of parallelism in processed frames rather than a 

lack of resources. (See also the “Performance Bottlenecks” chapter.) To mitigate this lack of parallelism, 

the encoder divides the frame into several regions and processes them in parallel. Note that these 

regions do not relate to tiles or slices defined by the HEVC standard. This is an encoder-specific notion 

and, apart from this control, it is not visible to the application in any way. 

The FEI encoder supports from one to eight regions. The more regions are used, the more speed-up can 

be achieved. As we can see from Figure 14 and Figure 15, changing the number of regions from one to 

eight increases performance by 4x and decreases VQ by 4% for the PreENC pipeline and 3% for DSO. The 

default number of regions for the FEI encoder is four. 

This is frame-level control. Application can turn it on and off depending on the frame type, current 

system workload, or any other criteria. (See also the “Performance/VQ Tradeoff” chapter.) 

 

 

 

 

Figure 14. Impact of number of frame partitions on VQ and density for PreENC + ENCODE pipeline 
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Number of Frame Partitions Density BD Rate 

1 0.98 2.13% 

2 1.69 0.90% 

4 2.74 -0.27% 

8 4.07 -2.29% 
Table 7. Impact of number of frame partitions on VQ and density for PreENC + ENCODE pipeline 

 

 

 

Figure 15. Impact of number of frame partitions on VQ and density for DSO + ENCODE pipeline 

Number of Frame Partitions Density BD Rate 

1 1.11 3.45% 

2 1.88 2.60% 

4 3.06 1.76% 

8 4.50 0.17% 
Table 8. Impact of number of frame partitions on VQ and density for DSO + ENCODE pipeline 

(For an API description look for mfxExtFeiHevcEncFrameCtrl:: NumFramePartitions in 

“Reference Manual for HEVC FEI.”) 
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https://github.com/Intel-Media-SDK/MediaSDK/blob/master/doc/mediasdkhevcfei-man.pdf
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3.5 FORCE CTU SPLIT 
This is another control that is intended to enable more parallelism during encoding. It is similar to 

Number of Frame Partitions, but instead of dividing the frame, it divides each 32x32 CTU into four CUs. 

That means that in an encoded bitstream, there will be no CUs larger than 16x16. Each CTU will be 

divided at least one time. This division creates more opportunities for parallel processing. Encoding of 

the 16x16 CU may start before the complete neighbor 32x32 CTU has been encoded. Another 

performance improvement comes from a reduced number of possible partitions to check. The 32x32 

mode is not evaluated in this case.   

Figure 16 and Figure 17 show the VQ and performance impact of this control. 

This is frame-level control. The application can turn it on and off depending on the frame type or current 

system workload, or any other criteria. (See also the “Performance/VQ Tradeoff” chapter.) Note that 

this control has no effect on I frames. 

 

Figure 16. Impact of force CTU split on VQ and density for PreENC + ENCODE pipeline 

Force CTU Split Density BD Rate 

Disabled 2.74 -0.27 % 
Enabled 4.79 -6.35 % 

Table 9. Impact of force CTU split on VQ and density for PreENC + ENCODE pipeline 
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Figure 17. Impact of force CTU split on VQ and density for DSO + ENCODE pipeline 

Force CTU Split Density BD Rate 

Disabled 3.06 1.76 % 
Enabled 5.40 -3.42 % 

Table 10. Impact of force CTU split on VQ and density for DSO + ENCODE pipeline 

 

(For an API description, look for mfxExtFeiHevcEncFrameCtrl::ForceCtuSplit in the Reference 

Manual for HEVC FEI.) 

  

https://github.com/Intel-Media-SDK/MediaSDK/blob/master/doc/mediasdkhevcfei-man.pdf
https://github.com/Intel-Media-SDK/MediaSDK/blob/master/doc/mediasdkhevcfei-man.pdf
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3.6 FAST INTRA MODE 
As follows from the name, this flag can be used to select different Intra prediction algorithms in the 

encoder. The FEI encoder does intra prediction in two steps. In the first step, nine AVC-specific intra 

prediction modes are estimated using fixed-function hardware. Then, additional refinement is done on 

EUs to select one of the 35 HEVC-specific intra prediction modes. If this flag is set, then the encoder 

skips the second step and just maps the AVC mode chosen in the first step to the corresponding HEVC 

mode without any additional refinement. That significantly improves performance, but obviously harms 

VQ. 

Figure 18 and Figure 19 show the VQ and performance impact of Fast Intra Mode control on the 

encoding process. As we can see, this is very powerful control, with significant impacts on both VQ and 

performance. 

This is frame level control. The application can turn it on and off depending on the frame type, current 

system workload, or any other criteria. (See also the “Performance/VQ Tradeoff” chapter.) 

 

Figure 18. Impact of fast intra mode control on VQ and density for PreENC + ENCODE pipeline 

Fast Intra Mode Density BD Rate 

Disabled 2.74 -0.27 % 
Enabled 4.16 -15.70 % 

Table 11. Impact of fast intra mode control on VQ and density for PreENC + ENCODE pipeline 
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Figure 19. Impact of fast intra mode control on VQ and density for DSO + ENCODE pipeline 

fast intra mode density BD rate 

disabled 3.06 1.76 % 
enabled 4.74 -13.92 % 

Table 12. Impact of fast intra mode control on VQ and density for DSO + ENCODE pipeline 

 

(For an API description, look for mfxExtFeiHevcEncFrameCtrl:: FastIntraMode in “Reference 

Manual for HEVC FEI.”) 

  

TU4

TU7

Disabled

Enabled

-30.00%

-25.00%

-20.00%

-15.00%

-10.00%

-5.00%

0.00%

5.00%

2 3 4 5 6 7 8 9 10 11 12

B
D

-r
at

e

Density

DSO + HEVC FEI FastIntraMode
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https://github.com/Intel-Media-SDK/MediaSDK/blob/master/doc/mediasdkhevcfei-man.pdf
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3.7 MOTION ESTIMATION CONTROLS 
In this chapter, we discuss several controls related to the motion estimation process.  

3.7.1 Search Window Size 

The FEI encoder does motion estimation in a rectangular area of a reference frame. The size of this area 

is specified via its horizontal and vertical dimensions by the RefWidth and RefHeight parameters.  

During motion estimation, the FEI encoder compares a source block of pixels to a target block of exactly 

the same size. This target block is located completely inside the search window. Because of this, the 

total number of possible search locations is lower than the total number of pixels inside the search 

window (RefWidth * RefHeight) and depends on the source block size as shown in Figure 20. The 

area covered by these locations will be denoted as a “reference region” of the search window. 

 

 

Figure 20. Search window for RefWidth=48, RefHeight=40 and 16x16 source block. The target block has the same size as the 
source block. One of the target block locations is highlighted in green and all possible locations for the top-left corner of the 
target blocks are highlighted in blue (“reference region”).  

Supported values of both the RefWidth and RefHeight parameters are 20, 24, …, 60, 64 for uni-

directional motion estimation and 20, 24, …, 28, 32 for bi-directional motion estimation. Also, the 

RefWidth * RefHeight must be less than or equal to 2,048 for uni-directional motion estimation and 

less than or equal to 1,024 for bi-directional motion estimation.  



   

HEVC FEI overview 29 

 

Figure 21. Impact of search window size on VQ and density for PreENC + ENCODE pipeline 

Window Size Density BD Rate 

20x20 2.78 -0.92 % 
24x24 2.77 -0.34 % 
28x28 2.76 -0.15 % 
32x32 2.74 -0.08 % 

Table 13. Impact of search window size on VQ and density for PreENC + ENCODE pipeline 

(For an API description look for mfxExtFeiHevcEncFrameCtrl::RefWidth and RefHeight in 

Reference Manual for HEVC FEI.) 

  

https://github.com/Intel-Media-SDK/MediaSDK/blob/master/doc/mediasdkhevcfei-man.pdf
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3.7.2 Search Path 

For better utilization of hardware, motion estimation is performed on several search locations at once 

through so-called search units (SUs) (Figure 22). The size of each SU depends on the size of the source 

block of pixels that has to be estimated. 4x4 search locations are used for 16x16 source blocks, 8x8 for 

8x8 source blocks, and 8x4 for 16x8 and 8x16 source blocks.  

 

Figure 22. Search units for RefWidth=48, RefHeight=40 and 16x16 source block. Search units have a size of 4x4 search locations 
each. Each SU is assigned an index. Only locations inside the numbered SUs will be used during motion estimation as top left 
corners of the target block. 

During motion estimation, the encoder goes through search units one by one, following predefined 

search path. Two are supported for now (“diamond” and “full”). See Figure 23. The application can also 

specify the number of SUs in the path and the length of the search path. For bi-directional prediction, 

the search path length specifies the sum of the searched SUs in both search windows. Supported values 

for search path length are 1, 2, …, 62, and 63 for uni-directional search and 2, 3, … , 63 for bi-directional 

search. 

 

Figure 23. “Diamond” and “Full” search paths. Each square represents single SU. Indices represents order of evaluation during 
motion estimation. Note, that actual SUs shape depends on source block dimension and may be rectangular, not square. 
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Both “diamond” and “full” search paths start from the center of the reference region and cover most of 

the SUs. The major difference is the order of evaluation. It becomes important for fast search algorithms 

that have short search paths. In this case, the diamond path covers a wider area but skips some SUs in 

comparison to the full path. See Figure 24 and Figure 25. 

 

Figure 24. Diamond search path for different search window sizes and different search path lengths. SUs that fall outside the 
reference region (blue area) are not shown. 

 

Figure 25. Full search path for different search window sizes and different search path lengths. SUs that fall outside the 
reference region (blue area) are not shown. 
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Usually, this control has a negligible impact on VQ and performance (Table 14 and Table 15). The only 

exception is very short search paths, where VQ slightly drops. Note that on some content, VQ drops on 

short search paths may be significantly higher than average, as shown in Table 14. 

Search Path Length Density BD Rate, Average BD Rate, Worst Case 

2 2.77 -0.72% -2.85% 

8 2.77 -0.16% -0.41% 

16 2.76 -0.12% -0.03% 

24 2.74 -0.11% -0.04% 

32 2.74 -0.12% -0.04% 

40 2.74 -0.12% -0.04% 

48 2.74 -0.12% -0.04% 

57 2.73 -0.12% -0.04% 
Table 14. Impact of search path length on VQ and density for PreENC + ENCODE pipeline for 32x32 search window  

Search Path Shape Density BD Rate 

Full 2.74 -0.12% 

Diamond 2.74 -0.12% 
Table 15. Impact of search path shape on VQ and density for PreENC + ENCODE pipeline for 32x32 search window 

(For an API description look for mfxExtFeiHevcEncFrameCtrl::SearchPath and LenSP in 

Reference Manual for HEVC FEI.) 

  

https://github.com/Intel-Media-SDK/MediaSDK/blob/master/doc/mediasdkhevcfei-man.pdf
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3.7.3 Adaptive Search 

Adaptive search is a variation of the standard gradient descent search. If it is disabled, then the encoder 

evaluates all SUs from the search path specified by the application and chooses the best location. If it is 

enabled, then after searching all SUs from the search path specified by the application, the encoder 

checks the best-found location. If it falls on the SU boundary, then the encoder continues to search by 

evaluating neighboring SUs of the best location found so far. The encoder continues this search until the 

best location falls inside the SU or all neighboring locations have been searched or the search window 

boundary is reached. (See Figure 26.) 

 

Figure 26. Adaptive search for search path length equal to 20. At step 1 20 SUs have been searched and the best pixel location 
(red square) has been found at the top-left corner of SU #3. Then SU #17 has been considered as the next to be searched, but 
rejected because it has been searched already. SU #16 has been eliminated by the same reason. So the search continues to the 
only remaining option SU #A0. After processing SU #A0, the best ME location once again falls onto its boundary and another 
adaptive search step has been taken. Finally, after searching SU #A1 the best ME location does not fall onto its boundary and 
the adaptive search ends. 

Note that the total number of SUs searched during any type of search, including bi-directional, cannot 

exceed 63. For example, if the search path length has been set to 61 and adaptive search has been 

enabled, then at most two additional SUs will be searched as part of the adaptive search after searching 

the first 61 SUs. 

Usually, this control has negligible impact on VQ and performance. (See Table 16.) 

Target Usage Adaptive Search  Density BD Rate 

4 
Disabled 2.74 -0.30% 

Enabled 2.74 -0.27% 

7 
Disabled 10.63 -24.39% 

Enabled 10.62 -24.36% 
Table 16. Impact of adaptive search control on VQ and density for PreENC + ENCODE pipeline 

For the API description, look for mfxExtFeiHevcEncFrameCtrl::AdaptiveSearch in “Reference 

Manual for HEVC FEI.” 

 

https://github.com/Intel-Media-SDK/MediaSDK/blob/master/doc/mediasdkhevcfei-man.pdf
https://github.com/Intel-Media-SDK/MediaSDK/blob/master/doc/mediasdkhevcfei-man.pdf
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3.7.4 Search Presets 

The application can directly specify motion estimation parameters as described in previous chapters, or 

use one of the six presets showed in Table 17. The impact of these presets on VQ and performance is 

shown in Figure 27. 

Preset Number Name Search Window 
Size 

Search Path 
Shape 

Search Path 
Length 

1 Tiny 24x24 Diamond 4 
2 Small 28x28 Diamond 9 
3 Diamond 48x40 Diamond 16 
4 Large diamond 48x40 Diamond 32 
5 Exhaustive 48x40 Full 48 

Table 17. Presets for motion estimation. 

 

 

Figure 27. Impact of search presets on VQ and density for PreENC+ENCODE pipeline 

For an API description, look for mfxExtFeiHevcEncFrameCtrl::SearchWindow in “Reference 

Manual for HEVC FEI.” 

 

https://github.com/Intel-Media-SDK/MediaSDK/blob/master/doc/mediasdkhevcfei-man.pdf
https://github.com/Intel-Media-SDK/MediaSDK/blob/master/doc/mediasdkhevcfei-man.pdf
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3.8 PERFORMANCE/VQ TRADEOFF 
A conventional SDK encoder has a Target Usage control for tradeoff between performance and quality. 

It has three settings: 

 TU1: Quality 

 TU4: Balance 

 TU7: Speed 

For some applications, this coarse control is not sufficient. A fine tradeoff between performance and 

visual quality may be desirable (e.g., to stay close to the balanced mode VQ but fit in one more channel). 

Yet another application may require runtime control over performance, at the same time keeping 

highest possible VQ (e.g., to adopt to changes in content or overall system workload). Both these goals 

can be achieved using FEI encoder controls. The application can gradually change performance and VQ 

and, in contrast to conventional encoder, do it in real time, on a frame-by-frame basis.  

Table 18 shows a list of major VQ and performance controls supported by the FEI encoder, and their 

mapping to different target usages of a conventional encoder. This is not a complete list (some other 

settings also differ), but their impact is insignificant. All combinations of controls are supported. The four 

most interesting one are shown in Figure 28 for the PreENC+ENCODE pipeline and in Figure 29 for the 

DSO+ENCODE pipeline. For example, for the DSO pipeline, enabling force CTU split control on P frames, 

fast intra mode control on B frames, and increasing the number of frame partitions to 8 on the I and B 

frames doubles density in comparison to the conventional encoder at the cost of just 3% to the BD rate. 

 Quality 
TU1 

Balanced 
TU4 

Speed 
TU7 

Number of ref frames L0 3 3 1 
Number of ref frames L1 1 1 1 
Number of Frame Partitions 1 4 4 
Force CTU split off off on 
Fast intra mode off off on 

Table 18. HEVC FEI presets to match different TU settings of conventional encoder 
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Figure 28. VQ/performance tradeoff for PreENC+ENCODE pipeline. FCS P means that Force CTU Split control is on on P frames, 
FIM B means that Fast Intra Mode is on on B frames, NFP8-4-8 means that Number of Frame Partitions is 8 for I frames, 4 for P 
frames, and 8 for B frames 
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Figure 29. VQ/performance tradeoff for DSO+ENCODE pipeline. FCS P means that Force CTU Split control is on on P frames, FIM 
B means that Fast Intra Mode is on on B frames, NFP8-4-8 means that Number of Frame Partitions is 8 for I frames, 4 for P 
frames and 8 for B frames.  

  



 

38  HEVC FEI overview 

4 PERFORMANCE BOTTLENECKS 

HEVC FEI provides a rich set of controls to improve VQ and performance. However, efficiently using 
them requires a basic understanding of possible performance bottlenecks. For example, it is useless to 
enable Fast Intra Mode if EUs are underutilized. The only thing it will achieve is to decrease VQ without 
any performance benefits.  

To illustrate how GPU utilization depends on workload type, we selected three typical use cases for the 
PreENC+ENCODE pipeline (Table 19) and profiled them using Intel® VTune Amplifier 2018 and its GPU 
Hotspots analysis. For each use case, we selected a different number of channels to ensure real time 
performance (i.e., to ensure that transcoding frame rate for each stream is above 30fps). To eliminate 
start-time impact on the results, Intel VTune Amplifier traces were gathered from the fifth to tenth 
seconds of transcoding. As input, the 40Mbps “elephants_dream” stream was used for both AVC and 
HEVC cases. It was transcoded in constant QP mode to about 4Mbps. 

 

Metric AVC to HEVC TU4 AVC to HEVC TU7 HEVC to HEVC TU7 

Channel count (density) 3 11 4 
Total GPU utilization, % 100% 100% 100% 
EU utilization, % 100% 100% 55% 
VDBOX1 utilization, % (encode/decode) 15%/0% 76%/0% 38%/62% 
VDBOX2 utilization, % (encode/decode) 0%/17% 0%/69% not used 

Table 19. GPU utilization metrics for PreENC+ENCODE pipeline 
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4.1 AVC TO TU4 HEVC TRANSCODING 
As we can see from Table 19 and Figure 30 , when the encoder works in TU4 (balanced) mode, it spends 

most of the time on motion estimation and mode decision. EU utilization is 100%. But the bitstream 

packer is underutilized and VDBOX1 is almost idle at 15%. An additional load on EUs, like an increase in 

the number of External MV Predictors, degrades performance. Performance controls like Force CTU Split 

reduce EU usage and give performance gains. 

HEVC-to-HEVC transcoding for the TU4 use case has a similar GPU utilization pattern. The only 
difference is that the VDBOX2 decoding workload moves to VDBOX1. EU remains a bottleneck. 

Such utilization patterns may change only with very high decoding and/or encoding bitrates, where 
VDBOX may become a bottleneck. We won’t estimate how high these bitrates are, because this heavily 
depends on stream content.  

 

Figure 30.  AVC to HEVC TU4. EU and VDBOXes task queues for a 100ms interval. Yellow denotes EU tasks, orange – VDBOX2, 
blue – VDBOX1.  
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4.2 AVC TO TU7 HEVC TRANSCODING 

Table 19 and Figure 31 show how the encoder works in speed mode and uses fast versions of algorithms 
for motion estimation and mode decisions. Overall, processing here is significantly faster (11 channels in 
comparison to 3 in the previous case). But EUs are still a bottleneck and they are 100% busy. PAK 
utilization has significantly grown in comparison to the previous use case, but is still low. Also note that 
both VDBOXEs are utilized, one for decoding and one for encoding. 

HEVC FEI controls behave similarly in this case, but the room for performance improvement is much 
smaller here. Most of the controls are already in fast mode (Table 18). 

 

Figure 31. AVC to HEVC TU7. EU and VDBOXes task queues for a 100ms interval. Yellow denotes EU tasks, orange – VDBOX2, 
blue – VDBOX1. 
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4.3 HEVC TO TU7 HEVC TRANSCODING 

In the next case (Table 19 and Figure 32), the picture changes. The encoder still works in the same speed 
mode, but the EUs are underutilized (just 55% busy). The reason for this change is redistribution of work 
between VDBOXes. In the previous case, one of them did decoding, another did encoding, and overall 
system performance was 11 channels. Here, all processing is done by one VDBOX and it becomes a 
bottleneck, decreasing performance to just 4 channels, close to TU4. VDBOX spends only 38% of the 
time on encoding and the rest on decoding. The second VDBOX is completely idle in this transcoding use 
case due to the hardware limitation of the 6th Generation Intel® Core™ Processors. Only one VDBOX 
supports HEVC processing, in contrast to AVC encoding/decoding, which is supported on both VDBOX1 
and VDBOX2. 

Because VDBOX is a bottleneck here, and its workload depends mostly on input/output bitrates and 
stream content, there is not much that can be done to improve performance. We assume that the 
bitrates and stream cannot be changed. On the other hand, EUs are underutilized, and it is possible to 
improve VQ by using more MVPs, reducing the number of frame partitions, and so on.  

 

Figure 32. HEVC to HEVC TU7. EU and VDBOXes task queues for a 100ms interval. Yellow denotes EU tasks, blue represents 
VDBOX1. 
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5 SAMPLE APPLICATION 

Usage of all FEI controls described in this paper is demonstrated by sample application that can be found 

on GitHub here. The application supports transcoding of one source stream to several output streams. 

This is called one-to-N transcoding. No resolution change is supported in this release, so it is a pure 

adaptive bitrate use case. 

The sample supports input streams encoded by different codecs, but in this paper we discuss only one 

combination: two input streams encoded from the same YUV data with different settings. The streams 

are: 

 The main stream, an AVC stream encoded with a high bitrate. It is used only as a source of raw 

data passed to the HEVC FEI encoder. In other words, this stream can be replaced by YUV file.  

 The auxiliary stream, an HEVC stream from some high-quality encoder. The purpose of this 
stream is to emulate IP algorithms, which would tune HEVC FEI encoder settings to reach better 
quality. Besides, the information from the auxiliary stream is used in the BRC implementation 
provide by the sample. 

Figure 33 shows the sample pipeline. The first stage produces decoded raw frames from the main input 

stream that goes through a regular AVC hardware decoder. We chose the AVC format for the main 

stream to reach higher density on the test system that has only one VDBOX that supports HEVC 

encoding/decoding (see the “Performance Bottlenecks” chapter for details). At the same stage, the 

auxiliary stream is processed by a bitstream parser and, based on extracted data, the repack stage 

produces MV predictors and other control parameters for the FEI encoder (see the “Decode Stream 

Out” and “MV Repacking” chapters for details). After the first stage, task objects (HevcTaskDSO) are 

produced that contain: 

 Decoded frame 

 DSO statistics 

 Filled HEVC FEI control structures 

Next, the task objects are passed to the Look Ahead (LA) part (a detailed description of LA is given in 

“Look Ahead BRC“ chapter). Note that LA may cache a big number of tasks. Since, in the current 

implementation, DSO statistics are bound to decoded surfaces, it leads to a high video memory 

consumption.  

Once the LA cache is full, LA returns a task object, which is passed to the encoder(s). Each encoder is 

asynchronously operating in a separate thread. Encoders have queues of input tasks. In the absence of a 

new task, the encoder is waiting on a conditional variable representing a non-zero tasks queue. When 

the task comes, the encoder wakes up, encodes a surface, and produces a compressed bitstream.  

https://github.com/Intel-Media-SDK/MediaSDK/tree/master/samples/sample_hevc_fei_abr
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Figure 33. Sample configuration used for VQ evaluation 

 

5.1 DECODE STREAM OUT 
Decode Stream Out (DSO) is a stage of information extraction from the input HEVC bitstream. It is done 

by input stream syntax parsing. Unfortunately, there is no support for HEVC decode stream-out in the 

GPU. In the sample, it is done on the CPU. The implementation goal was to show VQ improvements, so 

the code was not specifically optimized for performance. As a result, for speed target usage (TU7), this 

CPU-level parsing became a bottleneck and limited overall density. 

The information extracted by the DSO stage includes Motion Vectors (MVs), Reference Lists (RefLists) 

and some additional statistics for LA BRC (see the “Look Ahead BRC” chapter for details).  

The workflow diagram is represented in Figure 34. DSO accepts the encoded bitstream and extracts data 

related to next frame with the help of the bitstream parser. That includes all data associated with the 

frame NAL Units. Slice data contains several linked lists of HEVC basic syntax structures: CTU, CU, TU, 

and PU, where each CTU is a root for the CU list and each CU is a root for the TU and PU lists. Reference 

lists from the slice header are used to guarantee alignment of the reference structures between input 

and output streams. MVs from the PU become MV predictors after a repacking procedure. Some 

additional information from the CU level can be used as well. For example, the prediction type of the CU 

can give a hint to the encoder about which mode to use for the parent CTU. The DSO also plays an 

important role as a source of information for the BRC. QP and frame size are very important to know for 

proper bitrate control. The implementation of LA BRC in sample_hevc_fei_abr uses some more 

complex statistics as well, such as an approximation of Visual Distortion and the amount of predicted 

pixels from the reference frame for an accurate estimation of frame importance. 

We extracted and used this data to improve the quality of the HEVC FEI encoder: 

 Motion vectors. The FEI encoder doesn’t use HME. It could miss long MVs or choose non-

optimal ones. In the DSO stage, MVs extracted from the input stream are converted to MV 

predictors. 

 Force intra/inter flags. These controls, if passed, influence the mode decision stage. During the 

DSO stage, force flags are set depending on the input PU type. 
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 Reference lists. These are used to align the input stream reference structure with the FEI 

encoder. It is not a mandatory step for general-purpose encoding, but very important for 

transcoding scenarios. If the reference lists in the input and output streams diverge, it will result 

in an incorrect MV predictor application because of mismatched reference indexes. 

 POC. This is required for correct handling of the input surface by the MSDK lib. 

 QP, encoded frame size, frame type, etc. This is data used by the BRC algorithm. 

 Luma transform coefficients. The LA BRC algorithm uses them to approximate visual distortion. 

 

Figure 34. DSO part of pipeline workflow 

5.2 LOOK AHEAD BRC 
The Look Ahead (LA) BitRate Control (BRC) algorithm assigns different QPs to each encoding frame using 

information from future input frames. The LA algorithm better distribute bits between frames and 

achieves better visual quality by adapting to stream content. It also better deals with scene changes. 

The Look Ahead algorithm operates with frames in the LA window, including the current frame (which is 

not encoded yet) and some future frames. BRC tries to fit the target bitrate within the LA window with 

maximal visual quality. The Algorithm uses information from the input stream such as frame type and 

encoded size, as well as initial QPs, to estimate the importance of each frame and assign more bits (and 

lower QP) to more important frames. 

The BRC in sample_hevc_fei_abr can be treated as a two-pass BRC because it operates with frames 

already passed through some other BRC during the encoding of the input stream. 

The LA BRC in the sample has four important parameters, which can be set through the command line 

(see details on how each parameter affects encoding in the “BRC controls” chapter). 

 LookAheadDepth <n_frames>. This shows how many frames from future to look ahead. 

 LookBackDepth <n_frames>. This shows how many frames from the past to look back for 

calculation of statistics. 
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 AdaptationLength <n_frames>. This shows how many frames from the past to use to 

adjust the QP. 

 Algorithm::<MSE <YUV file> | NNZ | SSC>. This shows which algorithm to use to 

approximate visual distortion: 

o MSE  uses real mean squared error, calculated with YUV file (mostly for testing purposes in 

real use cases YUV is not available). 

o NNZ approximates distortion with the number of non-zero luma transform coefficients 

(default). 

o SSC approximates distortion with the sum of squared luma transform coefficients. 

BRC has the following workflow:  

 Input frames are buffered in a queue, with corresponding statistics gathered at the DSO stage. 

 After the queue reaches LookAheadDepth size, frames start to go through the rest of the 

pipeline, pass through BRC block, and then go to the FEI encoder. 

 

Figure 35. LA BRC workflow. 

5.2.1 Algorithm 

The main idea of the  algorithm is to adjust the QP of the current frame using statistics from future 

frames and from some already encoded frames. Knowledge of some characteristics of future frames 

allows us to predict content changes and redistribute bits between frames more accurately to achieve 

better quality. The cache of already encoded frames is used to make our encoded size prediction for the 

current frame more robust. 
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The LA BRC algorithm can be subdivided into five main steps (a detailed explanation of the algorithm can 

be found in the ”Appendix B. Look Ahead BRC Algorithm”). 

1. Extract new frame from the LA queue. 
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2. Calculate the complexities of future frames in the LA queue and the current frame. 

This step estimates the complexity of all non-encoded frames (current and all future). The 

algorithm uses some frame features such as QP, frame size, visual distortion, and pixel 

propagation. The aim is to obtain an integral value which shows how important this frame is for 

the sequence of frames within the LA window. It takes into account many indicators including 

how many pixels of the current frame would be used in future frames, visual quality, and the QP 

assigned by the previous BRC (during encoding of the input stream). 
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3. Go to the iterative search procedure that assigns QSteps for the current frame and frames 

from the LA queue until reaching target bitrate. 

Here, complexities are converted to QSteps (which are directly mapped to QPs). QStep 

assignment is performed by an iterative search procedure. At each search step, the algorithm 

assigns QSteps for all non-encoded frames and then estimates the bitrate. (For bitrate 

estimation, the encoded frames from frame cache are taken into account to stabilize the bitrate 

estimator and achieve robust estimation.) QStep correction is performed by scaling. If the 

calculated bitrate is far from the target, search chooses different scale. If the bitrate exceeds the 

target, the scale is decreased; otherwise, it is increased. Then the entire process is repeated 

until convergence is reached.  
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4. After the QPstep is obtained, convert it to QP with additional corrections depending on the 

frame type, with the purpose of adding extra bits to non-B-frames and compensating for 

prediction errors. 

This step performs QP correction if the current frame is a B-frame. The correction depends on 

reference frame types.  This correction also compensates for prediction errors using information 

about previously predicted and encoded frame sizes. 
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5. Send feedback after encoding to update encoded frame statistics with the size of the encoded 

frame. 
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5.2.2 BRC controls 

LA BRC exposes several parameters that influence the algorithm adaptation to content. Here, we give a 

brief explanation on how they affects actual quality adjustment. 

 LookBackDepth. This parameter controls the left border of the look-ahead window. This 

affects statistics calculation and bitrate estimation. Increasing this parameter helps to improve 

bitrate estimation in future frames (mostly by stabilizing the estimation, making it less sensitive 

to prediction errors). However, it slows down the adaptation to content changes. In other 

words, too many frames from the past may result in a bad adaptation (Figure 36). On content 

where frame statistics change dramatically, a small window adapts much faster (Figure 37).  On 

the other hand, in situations where stream statistics change but overall content complexity 

remains the same, a large window stabilizes the bitrate estimation and produces better quality 

(Figure 38). 

 

Figure 36. Adaptation on stream content change (panaramic shooting on BQ terrace stream). Blue – 300 frames of LookBack, 
orange – 100 frames, green – 0 frames. 

 

Figure 37. Adaptation to scene change: complex content to almost still image (crowd run to honey bee). Blue – 300 frames of 
LookBack, orange – 100 frames, green – 0 frames. 
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Figure 38. Adaptation to camera move on honey bee. Blue – 300 frames of LookBack, orange – 100 frames, green – 0 frames. 

 LookAheadDepth. This is the number of frames from the future to look ahead, the same as LA 

queue length. 

A bigger parameter means more benefits gained after scene change (because the algorithm will 

start preparation to the upcoming scene change earlier). For example,  Figure 39 shows where 

complex motion changes to static content (“crowd run” changes to “honey bee”). A large LA 

window allows the algorithm to notice such changes and to increase the bitrate. On the other 

side, if the complexity of a new scene is overestimated, the algorithm will decrease the bitrate 

earlier, with bigger LookAheadDepth, and will lose overall quality on this segment. For instance, 

Figure 40 shows panoramic motion changes to complex motion (“BQ terrace” changes to 

“crowd run”). The algorithm overestimated the complexity of the “crowd run” sequence and 

lost quality on the interval between frames 300 and 500. 

 

Figure 39. Benefit from noticing scene change earlier. Blue - LookAheadDepth = 300, orange - LookAheadDepth = 100 
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Figure 40. Panoramic motion will change to complex motion soon. Larger LA window lost quality. Blue - LookAheadDepth = 300, 
orange - LookAheadDepth = 100. 

 AdaptationLength. This parameter controls number of frames from the past which are used 

to compute the bitrate adjustment ratio (see step 4 in the “Algorithm” chapter). A bigger 

amount stabilizes the adjustment estimation, but it makes it less sensitive to content changes. In 

general, this parameter targets bitrate accuracy. Figure 41 shows behavior in the case of 

changing a simple motion to a complex motion. The lowest adaptation window allows it to 

adapt faster. In Figure 42, the situation is the opposite. The larger window brings robustness to 

the estimation, when the small window fails to deal with a scene change where an almost-still 

image changes to simple motion.  

 

Figure 41. Behavior of algorithm with different AdaptationLength (simple panoramic shooting on “bqterrace” changes to 
complex motion of cars at the end of stream). Blue - 300 frames, green - 30 frames. 
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Figure 42. Behavior of algorithm with different AdaptationLength (almost still image of “honey bee” changes to simple motion 
on “sunflower” on frame 1347). Blue - 300 frames, green - 30 frames. 

In conclusion, the optimal setting for the LA BRC parameters should be a tradeoff between prediction 

error and the speed of adaptation to content changes. 

 Algorithm. This is the algorithm of visual distortion estimation. It is used to approximate the 

subjective quality of an encoded frame relative to the source frame. This value is one of the 

parameters of the frame complexity estimation formula (see Appendix B. Look Ahead BRC 

Algorithm,” for details). Supported algorithms are: 

o MSE (Mean Squared Error), calculated as a per-pixel sum of the squared differences 

between the source and encoded frames divided by the number of pixels. This one 

requires an original YUV file, which is not available in most cases. It is implemented 

mostly for testing purposes, and not optimized for performance (it reads huge amount 

of data from disk, allocates a temporary buffer, and uses non-optimized straightforward 

way to calculate sum of squared differences). This has the best quality and worst 

performance among all methods (see the “Visual Quality” chapter for details). 

o NNZ (Number of Non-Zero transform coefficients), calculated as a total number of the 

non-zero luma transform coefficients in a whole frame. Based on the results from the 

“Visual Quality” chapter, it gives good quality in terms of BD-rate gain and almost the 

same performance as hardware BRC. Because of that, the NNZ algorithm is used by 

default. 

o SSC (Sum of Squared luma transform Coefficients). This is another way to map 

coefficients to distortion, which involve the magnitude of the coefficients. This method 

shows worse quality results than NNZ, with comparable performance.  
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5.2.3 Scene Change Handling 

The Look Ahead BRC algorithm is much better for dealing with scene changes than regular BRC. Scene 

changes may be very harmful for BRC without LA if the motion type changes (i.e., fast motion content 

changes to slow motion and vice versa). In such a situation, past statistics won’t help us guess optimal 

encoding parameters, so BRC will spend some time to adapt for the new type of content and will 

produce content of bad quality during this time, trying to stay within the allowed bitrate. Figure 43 

demonstrates the different behavior of two BRCs during a scene change. We will use hardware BRC as a 

reference in quality and performance measurements. This standard built-in driver bitrate control 

algorithm is used by the conventional hardware encoder. This plot demonstrates the PSNR Y of HW BRC 

and LA BRC on a concatenated stream with several scene changes, where the type of motion radically 

changes. It is seen that the LA BRC experiences much less distortion on scene changes. For example, on 

frame 1058 PSNR Y, the difference between the two algorithms is above 9db. This results in a huge 

visual quality difference (Figure 44 and Figure 45). 

 

Figure 43. Scene change “crowd run” -> “honey bee” (frame 1056) -> “sunflower” (frame 1347). Blue line - HW BRC without LA, 
orange - LA BRC from sample_hevc_fei_abr 
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Figure 44. HW BRC PSNR-Y 29.18 (frame 1058 after “crowd run” to “honey bee” scene change) 

Figure 45. LA BRC PSNR-Y 38.5563 (frame 1058 after “crowd run” to “honey bee” scene change) 
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5.2.4 Visual Quality 

Four streams were used to evaluate the impact of the BRC algorithm on visual quality. Each one was 

concatenated from four streams from the test pool described in Appendix E. Stream information.” We 

selected streams with different complexities to make scene changes harder to handle by BRC and to 

emphasize LA benefits. We ran the DSO+ENCODE pipeline and compared the default BRC used by the 

hardware-accelerated encoder with LA BRC, as described above. 

VQ results are shown in Table 20. On these streams, LA BRC shows better objective visual quality than 

HW BRC. The MSE algorithm is the best, but both NNZ and SSC have similar VQ gain on two streams, 

moderate gain on one, and are similar to HW BRC VQ on the other stream. 

Performance results are presented in Table 21. LA BRC with the NNZ and SSC algorithms demonstrates 

performance on par with HW BRC. MSE is significantly slower. 

 

Table 20. BD-rate comparison. LA settings: LookAhead=100, LookBack=100, AdaptationLength=100. Positive numbers mean that 
LA BRC is better. 

 

BRC Algorithm Density 

HW BRC 3.19 

MSE 0.26 

NNZ 3.02 

SSC 3.02 

 

Table 21. Average density in numbers of transcoding channels. LA settings: LookAhead=100, LookBack=100, 
AdaptationLength=100. Bigger is better. 

  

sequence MSE NNZ SSC

bq_terrace_crowd_run_HoneyBee_sunflower 3.43% 1.06% 0.55%

ducks_sunflower_park_joy_HoneyBee 4.88% 4.66% 3.53%

HoneyBee_sunflower_bq_terrace_crowd_run 2.45% 0.09% -0.86%

sunflower_ducks_HoneyBee_park_joy 5.65% 6.36% 5.36%

average 4.10% 3.04% 2.15%
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6 APPENDIX A. SAMPLE APPLICATION DETAILS 

6.1 DECODE STREAM-OUT 
DSO implementation in the sample_hevc_fei_abr is performed by HevcSwDso class, which uses 

the IYUVSource interface and fills in data for the Encoder and BRC. Also, it owns an instance of 

BS_HEVC2_parser, which perform actual input stream parsing. 

HEVC bitstream parser implementation is located in the BS_HEVC2_parser class. To initialize the 

parser, input stream should be opened with BS_HEVC2_parser::open. To start actual parsing, 

perform a call of the BS_HEVC2_parser::parse_next_unit function.  Note that this call 

invalidates all pointers to data of previous frame’s structures if they weren’t locked by 

BS_HEVC2_parser::lock. After that step, obtain the pointer to the first NALU of the frame with a 

BS_HEVC2_parser:: get_header call. Then you can access all syntax elements: SPS/PPS/Slice 

Headers, CTU, CU, PU, and TU trees. Each syntax element tree is arranged in a linked list structure. 

All the work is done inside mfxStatus HevcSwDso::GetFrame(HevcTaskDSO & task)and 

the following functions are called one-by-one: 

 void HevcSwDso::FillFrameTask(const BS_HEVC2::NALU* header, 
HevcTaskDSO & task) 

header – pointer to the current NAL Unit being parsed 

task – DSO task which stores information required for proper encoding with the FEI encoder 

Here, the current NAL Unit is parsed and extracted information required for 

HevcTaskDSO task, such as: DPB state (HevcTaskDSO::m_dpb), RefLists 

(HevcTaskDSO::m_refListActive[2]),  frame type 

(HevcTaskDSO::m_frameType). This data is required for actual encoding. RefLists 

are used for proper construction of mfxExtHEVCRefLists – the extension buffer 

which is used to align internal encoders RefList with the one from input stream. 

 void HevcSwDso::FillMVP(const BS_HEVC2::NALU* header, 

mfxExtFeiHevcEncMVPredictors & mvps, mfxU32 nMvPredictors[2]) 

header – pointer to current NAL Unit being parsed 

mvps – motion vector predictors buffer to fill 

nMvPredictors[2] – to report back number of MVPs for L0/L1 lists 
 

In this function, the mfxExtFeiHevcEncMVPredictors buffer is filled according 

to its data layout with the motion vectors of input frame. Those vectors will be used as 

predictors during motion estimation stage of FEI encoder. 

 void HevcSwDso::FillCtuControls(const BS_HEVC2::NALU* header, 

mfxExtFeiHevcEncCtuCtrl & ctuCtrls) 

header – pointer to current NAL Unit being parsed 

ctuCtrl – extension buffer for CTU level controls 
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In this function, some additional tuning is performed on the CTU level by filling the 

mfxExtFeiHevcEncCtuCtrl buffer. Currently, the CTU is forced to Inter/Intra 

according to the mode decision in the auxiliary input stream. 

 void HevcSwDso::FillBRCParams(const BS_HEVC2::NALU* header, 

HevcTaskDSO & task) 

header – pointer to current NAL Unit being parsed 

task – DSO task which stores information required for proper encoding with FEI encoder and 

also data for BRC 
 

This function fills HevcTaskDSO::m_statData parameters for LA BRC (LA BRC 

presence is indicated by the m_bCalcBRCStat variable).  LA BRC uses various statistics, 

including original frame size, share of intra pixels, and shares of pixels predicted from 

each reference. If the user selected an algorithm which uses distortion approximation, 

the additionally calculated number of non-zero luma transform coefficient or sum of 

squared coefficients.  
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6.2 MV REPACKING 
Repacking is the process of converting per PU motion vectors obtained from DSO to the 

mfxExtFeiHevcEncMVPredictors structure required for FEI encoder. It has two modes of operation. 

Both modes attempt to produce the MVP field in mfxExtFeiHevcEncMVPredictors that is as close 

as possible to the motion vector field in the corresponding input frame from auxiliary bitstream. 

6.2.1 First mode 

This is the default mode. It is specified via a –DSOMVPBlockSize 7 command line option of the 

sample_hevc_fei_abr application. It sets the mfxExtFeiHevcEncMVPredictor::BlockSize 

field of each mfxExtFeiHevcEncMVPredictors::Data element according to the size of the 

corresponding CU in the frame from the auxiliary bitstream (Figure 46). For the sake of simplicity, only 

the L0 motion vectors will be considered, since the process is the same for L1 motion vectors. 

For 32x32 CUs, each input CU corresponds to four mfxExtFeiHevcEncMVPredictor elements. The 

BlockSize field of the mfxExtFeiHevcEncMVPredictor element corresponding to the top-left 

16x16 block of the 32x32 CU is set to 2, while the other three BlockSize fields are set to 0. This 

enables the 32x32 predictor mode (i.e., only MVPs from the first mfxExtFeiHevcEncMVPredictor 

element will be used for the whole 32x32 area occupied by the CU). The motion vectors corresponding 

to the PUs inside the 32x32 CU are copied into the mfxExtFeiHevcEncMVPredictor::MV[4] field of 

the same mfxExtFeiHevcEncMVPredictor element. Since there may be no more than four PUs 

inside a CU, all available bitstream motion vectors for this CU are copied and no loss of motion vector 

data occurs during repacking. 

For 16x16 CUs, each 16x16 CU corresponds to a single mfxExtFeiHevcEncMVPredictor element. For 

this element, the BlockSize field is set to 1 (16x16 predictor mode) and up to four MVs from the PUs 

inside the 16x16 CU are copied into the mfxExtFeiHevcEncMVPredictor::MV[4] field.  

For 8x8 CUs, each 8x8 CU has three sibling 8x8 CUs that correspond to the same 

mfxExtFeiHevcEncMVPredictor. For each of these four CUs, only the motion vector from the first 

PU inside the CU is copied into the mfxExtFeiHevcEncMVPredictor::MV[4] field of the 

corresponding mfxExtFeiHevcEncMVPredictor element. 

Note that the process above applies only to inter CUs. For intra CUs, there are no motion vectors to 

repack and the corresponding mfxExtFeiHevcEncMVPredictor structure is left empty.  
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Figure 46. Illustration of the process of repacking the motion vectors from the DSO auxiliary stream into the motion vector 
predictor structure mfxExtFeiHevcEncMVPredictors. First mode, -DSOMVPBlockSize 7.  
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6.2.2 Second mode 

The second mode of motion vector repacking is specified via the –DSOMVPBlockSize 1 command line 

option of the sample_hevc_fei_abr application. It sets the BlockSize field of each 

mfxExtFeiHevcEncMVPredictors::Data element to 1 (16x16 MVP mode) and attempts to fill all 

the mfxExtFeiHevcEncMVPredictor elements corresponding to 16x16 blocks with valid motion 

vector predictor data by replication MVPs if necessary (Figure 47).  

For 32x32 CUs, the motion vector inside each PU is put into each mfxExtFeiHevcEncMVPredictor 

element that has its corresponding 16x16 block intersected by this PU. 

For 16x16 CUs, the repacking process is the same as for the first mode. 

For 8x8 CUs, the motion vectors from all PUs of the four 8x8 CUs corresponding to a single 

mfxExtFeiHevcEncMVPredictor element are gathered and four motion vectors corresponding to 

the PUs with largest area are copied into the mfxExtFeiHevcEncMVPredictor::MV[4] field. 
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Figure 47. Illustration of the process of repacking the motion vectors from the DSO auxiliary stream into the motion vector 
predictor structure mfxExtFeiHevcEncMVPredictors. Second mode, -DSOMVPBlockSize 1. 
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6.3 LA BRC 
The Look Ahead BRC is implemented in the LA_BRC class, which provides an interface for the encoder 

to submit a new frame and its statistics, and also to report the size of the encoded frame as feedback. 

The Look Ahead Queue is implemented in the LA_Stat_Queue class. All the work with the queue is 

hidden within LA_BRC. The LA queue stores some average statistics for frames in it, which is 

automatically updated when some frame leaves the queue or some other frame comes in. This data is 

used by the LA Algorithm for frame complexity estimation (step 3) and in the QP correction stage (step 

4). Correspondence of the code location to the steps in section “Algorithm“ is: 

1. LA_Stat_Queue::StartNewFrameProcessing 

2. LA_Stat_Queue::CalcComplexities 

3. LA_BRC::UpdateStatData 

4. LA_BRC::PreEnc 

5. LA_BRC::Report 
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7 APPENDIX B. LOOK AHEAD BRC ALGORITHM 

7.1 ALGORITHM 
In this section, we provide a precise explanation of each step from the “Algorithm” section. 

The major steps of the algorithm are: 

1. Extract new frame from LA queue. 

2. Calculate the complexity of all frames in the LA queue, and for the current frame, using the 

statistics of each frame with the following formula: 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦[𝑖] = 𝑄𝑃𝑠𝑡𝑒𝑝_𝑜𝑟𝑖𝑔[𝑖] ∙ 𝐹𝑟𝑎𝑚𝑒𝑆𝑖𝑧𝑒_𝑜𝑟𝑖𝑔[𝑖]√
𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

1 + 𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛[𝑖]
∙

𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒𝑑[𝑖]

𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
. 

 

Where 𝑄𝑃𝑠𝑡𝑒𝑝_𝑜𝑟𝑖𝑔 and 𝐹𝑟𝑎𝑚𝑒𝑆𝑖𝑧𝑒_𝑜𝑟𝑖𝑔 are original QPstep and FrameSize from input 

stream. 𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 is a current frame distortion and 𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is an average distortion in the 

LookAhead + LookBack window. 𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒𝑑 is the total propagation of the current frame’s 

pixels, 𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the  average propagation on the LookAhead + LookBack window. 

 

3. Go to the iterative search procedure, which assigns QPs to each frame and checks if the total 

bitrate of the LA queue is within the bitrate (sizes of already encoded frames from cache are 

also used here for more robust bitrate estimation). The QPstep estimation is performed with the 

following procedure. 

𝑄𝑃𝑠𝑡𝑒𝑝[𝑖] =  
𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦[𝑖]0.4

𝑠𝑐𝑎𝑙𝑒
 

This will set the QPsteps for P frames at correct level, but the I and B frames should be corrected 

by the following procedure, which is applied to all frames in the LA queue (non-encoded 

frames). At first, we will skip all the subsequent B-frames (frames are stored in encoded order, 

so reference frames precede to non-reference―i.e., the sequence IPBBB in the LA queue 

corresponds to the reference I and P-frames and 3 B-frames, which have I-frame as the L0 

reference and P-frame as the L1 reference). And set their QPs as: 

𝑄𝑠𝑡𝑒𝑝𝐵 = 𝑄𝑠𝑡𝑒𝑝𝐹𝑖𝑟𝑠𝑡𝑁𝑜𝑛𝐵 ∙ (
𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝐹𝑖𝑟𝑠𝑡𝑁𝑜𝑛𝐵

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝐵
)

0.35

. 

 

 Then, for all P-frames, we will compute two values, which initialized with 0 first. 

𝐿𝑜𝑔𝑄 = (𝐿𝑜𝑔𝑄 + log (𝑄𝑃𝑠𝑡𝑒𝑝[𝑖])) ∙ 𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛[𝑖] 

𝑛𝑜𝑟𝑚 = (𝑛𝑜𝑟𝑚 + 1) ∙ 𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛[𝑖] 

 

Both are used for I frames QPstep calculation. 

𝑄𝑃𝑠𝑡𝑒𝑝𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒𝑑 =  
𝑒

𝐿𝑜𝑔𝑄
𝑛𝑜𝑟𝑚

1.4
 

 

If 𝑛𝑜𝑟𝑚 ≥ 1then 𝑄𝑃𝑠𝑡𝑒𝑝𝐼 = 𝑄𝑃𝑠𝑡𝑒𝑝𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒𝑑 else we blend the QPstep in following way: 
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𝑄𝑃𝑠𝑡𝑒𝑝𝐼 = 𝑄𝑃𝑠𝑡𝑒𝑝𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒𝑑 ∙ 𝑛𝑜𝑟𝑚 + 𝑄𝑃𝑠𝑡𝑒𝑝𝐼𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 ∙ (1 − 𝑛𝑜𝑟𝑚). 

 

Now we can estimate the bitrate for current 𝑠𝑐𝑎𝑙𝑒. 

𝐵𝑖𝑡𝑠𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑[𝑖] =  
𝑄𝑃𝑠𝑡𝑒𝑝𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙[𝑖]

𝑄𝑃𝑠𝑡𝑒𝑝𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑[𝑖]
∙ 𝐹𝑟𝑎𝑚𝑒𝑆𝑖𝑧𝑒[𝑖] 

 

𝐵𝑖𝑡𝑟𝑎𝑡𝑒 =  
1

𝑁𝐹𝑟𝑎𝑚𝑒𝑠
∙ ( ∑ 𝐵𝑖𝑡𝑠𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑[𝑖]

𝐹𝑢𝑡𝑢𝑟𝑒𝐹𝑟𝑎𝑚𝑒𝑠

+ ∑ 𝐵𝑖𝑡𝑠𝐸𝑛𝑐𝑜𝑑𝑒𝑑[𝑖]

𝐸𝑛𝑐𝑜𝑑𝑒𝑑𝐹𝑟𝑎𝑚𝑒𝑠

) 

Where 𝑁𝐹𝑟𝑎𝑚𝑒𝑠 – is a number of frames in current window, which is NLookAheadFrames + 

NLookBackFrames. 

 

Search procedure checks the 𝐵𝑖𝑡𝑟𝑎𝑡𝑒 and if it doesn’t match requested one it reruns with 

different 𝑠𝑐𝑎𝑙𝑒.  

 

At first, scale and bitrate ratio bounds initialized. The target is to reach ratio which equals (or 

very close) to 1.0. 

 
Here Ls and Rs are the left and right bounds of scale, represented by the lowest and biggest 

possible scale to apply. Lr and Rr are bounds of ratio corresponding to scale bounds. The target 

ratio 1.0 is somewhere between Lr and Rr.  
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Then projection of target ratio to scale is performed. 

 
CurrentScale now is a candidate to be the scale which gives bitrate close to target. 

 

The next step is projection of CurrentRatio back to the ratio axis. 

 
The scale to ratio projection (actually, bitrate calculation) procedure includes QPsteps 

calculation for all frames in the LA window. 
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Check if CurrentRatio is near target within some predefined accuracy. 

 
If it is not (like on picture above, here bitrate exceeds target), move the next iteration of the 

search to one of the segments, which has target ratio inside. 

 

Update one of the boundaries of scale and ratio. In the described situation, the next search will 

be performed in the left branch. 

 
 

Repeat the procedure until convergence. At that moment, the final QPsteps are known. 

 

4. After QPstep is obtained, convert it to QP with additional correction depending on the frame 

type, with the purpose of adding extra bits to non-B-frames. Multiply by the BitsEncoded / 

BitsPredicted ratio to compensate for prediction errors. 
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If the current frame is a non-B-frame, the resulting QP is just a simple formula: 

 𝑄𝑃[𝑖] = 𝑄𝑃𝑠𝑡𝑒𝑝2𝑄𝑃 (𝑄𝑃𝑆𝑡𝑒𝑝[𝑖] ∙
𝐵𝑖𝑡𝑠𝐸𝑛𝑐𝑜𝑑𝑒𝑑

𝐵𝑖𝑡𝑠𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
). 

 

For B-frames, additional processing is performed (see explanation below). 

 

Consider we have B-frame with 2 references (if there are more than 1 L0, only first one is taken 

into account) as in the picture below. 

 
Where POC – is a current B-frame POC, compl – is a current B-frame complexity, POC_L0 (L1), 

compl_L0 (L1), QP_L0 (L1), type_L0 (L1) – are POC, complexity, QP and type of L0 (L1) 

references. 

 

Correction is performed in two steps, where the first step depends on the type of L0 and L1 

references and dedicated to QP smoothing. 
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Case 1: both references are P-frames. 

Calculate the complexity distance in following way: 

𝐶𝑜𝑚𝑝𝑙𝐷𝑖𝑠𝑡𝐿0 = min (
𝑐𝑜𝑚𝑝𝑙 + 1.0

𝑐𝑜𝑚𝑝𝑙_𝐿0 + 1.0
,
𝑐𝑜𝑚𝑝𝑙_𝐿0 + 1.0

𝑐𝑜𝑚𝑝𝑙 + 1.0
). 

 

This value indicates how close complexities are. For similar complexities, this value 

increases and tends to limit at 1.0 for identical complexities. 

The formula for 𝐶𝑜𝑚𝑝𝑙𝐷𝑖𝑠𝑡𝐿1 is similar. 

POC distances are more straightforward: 

𝑃𝑂𝐶𝑑𝑖𝑠𝑡𝐿0 = 𝑃𝑂𝐶 − 𝑃𝑂𝐶_𝐿0; 

𝑃𝑂𝐶𝑑𝑖𝑠𝑡𝐿1 = 𝑃𝑂𝐶_𝐿1 − 𝑃𝑂𝐶; 

 

 

After that, QP is calculated as a weighted blending of reference frames QPs by 

following formula: 

𝑞𝑝 =
𝑞𝑝_𝐿0 ∙ 𝐶𝑜𝑚𝑝𝑙𝐷𝑖𝑠𝑡𝐿0 ∙ 𝑃𝑂𝐶𝑑𝑖𝑠𝑡𝐿0 + 𝑞𝑝_𝐿1 ∙ 𝐶𝑜𝑚𝑝𝑙𝐷𝑖𝑠𝑡𝐿1 ∙ 𝑃𝑂𝐶𝑑𝑖𝑠𝑡𝐿1

𝐶𝑜𝑚𝑝𝑙𝐷𝑖𝑠𝑡𝐿0 ∙ 𝑃𝑂𝐶𝑑𝑖𝑠𝑡𝐿0 + 𝐶𝑜𝑚𝑝𝑙𝐷𝑖𝑠𝑡𝐿1 ∙ 𝑃𝑂𝐶𝑑𝑖𝑠𝑡𝐿1
. 

 

The same approach is used to calculate updated complexity: 

𝐶𝑜𝑚𝑝𝑙𝑈𝑝𝑑𝑎𝑡𝑒𝑑

=
𝑐𝑜𝑚𝑝𝑙_𝐿0 ∙ 𝐶𝑜𝑚𝑝𝑙𝐷𝑖𝑠𝑡𝐿0 ∙ 𝑃𝑂𝐶𝑑𝑖𝑠𝑡𝐿0 + 𝑐𝑜𝑚𝑝𝑙_𝐿1 ∙ 𝐶𝑜𝑚𝑝𝑙𝐷𝑖𝑠𝑡𝐿1 ∙ 𝑃𝑂𝐶𝑑𝑖𝑠𝑡𝐿1

𝐶𝑜𝑚𝑝𝑙𝐷𝑖𝑠𝑡𝐿0 ∙ 𝑃𝑂𝐶𝑑𝑖𝑠𝑡𝐿0 + 𝐶𝑜𝑚𝑝𝑙𝐷𝑖𝑠𝑡𝐿1 ∙ 𝑃𝑂𝐶𝑑𝑖𝑠𝑡𝐿1
. 

 

 

 

 

Case 2: only one of the references is a P-frame 

In such a situation, values from that reference are simply inherited. For example, if 

the P-frame reference is the L0 reference, the following formula is used: 

 

𝑞𝑝 = 𝑞𝑝_𝐿0; 

𝐶𝑜𝑚𝑝𝑙𝑈𝑝𝑑𝑎𝑡𝑒𝑑 = 𝑐𝑜𝑚𝑝𝑙_𝐿0. 

 

 

Case 3:  

Blend the QPs of references and keep the complexity of the current frame: 

𝑞𝑝 =
𝑞𝑝_𝐿0 + 𝑞𝑝_𝐿1

2
+ 6 ∙ 𝑙𝑜𝑔21.4; 

𝐶𝑜𝑚𝑝𝑙𝑈𝑝𝑑𝑎𝑡𝑒𝑑 = 𝑐𝑜𝑚𝑝𝑙. 
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In the next step, additional adjustment is performed. QP is increased to save bits on B-frames 

encoding. It is done by adding some delta to QP: 

∆𝑞𝑝𝐵 = 𝑙𝑜𝑔2 (
𝐶𝑜𝑚𝑝𝑙𝑈𝑝𝑑𝑎𝑡𝑒𝑑

𝑐𝑜𝑚𝑝𝑙
∙

𝐵𝑖𝑡𝑠𝐸𝑛𝑐𝑜𝑑𝑒𝑑

𝐵𝑖𝑡𝑠𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
) ∙ 6 ∙ 0.35; 

𝑞𝑝+= 𝐶𝑙𝑖𝑝3(0,6, ∆𝑞𝑝𝐵). 

 

Where 𝐶𝑙𝑖𝑝3 truncates delta to 0 or 6 if it exceeds corresponding boundary.  

 

5. After encoding, update the encoded frame statistics with the size of the encoded frame. 
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7.2 PIXEL PROPAGATION 
This section provides more explanation of how pixel propagation is calculated.  

Let’s consider four frames of 2x2 pixels resolution. Green blocks are intra pixels white are inter pixels. 

Numbers over inter pixels indicate reference frame numbers. 

 

 

First, for each frame, we find how many pixels we predicted from each reference frame. For Bi-

prediction, we take half of the pixels from each frame. 

“0->3” means that we predict three pixels from frame number 0. 
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Then, for each frame, calculate the prediction share (share of total inter pixels predicted from each 

reference), which is the number of predicted pixels from a particular frame divided by the total number 

of inter pixels. It is a measure of prediction from each reference frame.  

“3->0.5/2=0.25” means that 25% of the inter pixels in this frame are predicted from frame number 3. 

  

 

On this step, we calculate how many pixels are directly propagated by each reference frame (i.e., for 

frame 0, how many 0 indicators are in following frames). For Bi-prediction, we take half of the pixels 

from each frame.  
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The tricky thing is taking into account indirect propagation, which is the number of pixels predicted from 

the current frame transitively by referencing other frames which have direct references to the current 

frame. In other words, if we consider three frames, each is a reference to only the previous one, IPP, 

and suppose, at each frame, 50% of pixels are predicted from the previous frame. First, P uses 50% of I 

pixels; second, P uses 50% of the first P pixels, but in the same moment it actually uses about 25% of the 

pixels of the I frame. So I frame is more important, since its pixels propagate more. From this point of 

view, any distortion in the I frame propagates more to the other frames.  
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The total propagation share is the sum of directly and indirectly propagated pixels divided by the total 

number of pixels, plus one for regularization (this is made to make non-ref B-frames have a total value 

equal to one, which makes it much simpler to use, because it is non-zero at any frame). 
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8 APPENDIX C. SYSTEM CONFIGURATION 

OS  

 CentOS Linux* release 7.4.1708 

 Kernel: 3.10.0-693.17.1.el7.x86_64 

 UMD: 16.9.00092 

 KMD: i915 1.6.0 20170818-00092-13ac7794 

CPU 

 Intel® Core™ i7-6770HQ CPU processor @ 1.80GHz 

 CPU(s):   4 

 Thread(s) per core: 2 

 Stepping:  3 

 L1d cache:  128 KB 

 L1i cache:  128 KB  

 L2 cache:  1 MB 

 L3 cache:  6 MB 

 L4 cache:  128 MB 

GPU 

 Intel® Iris™ Graphics 580 

 eDRAM:  128 MB 

 EU Count:  72 

 Max Core Frequency: 950 MHz 

Memory 

 Number of channels: 1 

 Size:    16384 MB 

 Type:    DDR4 

 Speed:   2133 MHz 

Three GPU slices (default) were enabled. CPU, GPU, and uncore frequencies were fixed. Performance 

mode and VDBox* load balancing were enabled. To do so, the following commands were executed: 

echo 950 > /sys/class/drm/card0/gt_min_freq_mhz 
echo 950 > /sys/class/drm/card0/gt_max_freq_mhz 
echo 950 > /sys/class/drm/card0/gt_boost_freq_mhz 
 
cpupower frequency-set -d 1800000 -u 1800000 -g performance 
 
wrmsr 0x620 0x1212 
wrmsr 0x621 0x12 
 
echo -e "[KEY]\n\t0x00000001\n\tUFKEY_INTERNAL\\\n\t[VALUE]\n\t\t Enable VDBox 
load balancing\n\t\t4\n\t\t1" > /etc/igfx_user_feature.txt 
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9 APPENDIX D. COMMAND LINES 

This appendix provides command lines used during VQ and performance measurements. Sample 

applications can be found on GitHub here. A detailed description of command line parameters can be 

found in correspondent readme here.  

9.1 CONVENTIONAL TRANSCODING 

9.1.1 TU4 
./sample_multi_transcode -i::h264 $AVC_INPUT -o::h265 $TU4_STREAM -cqp -qpi $QP 
-qpp $QP -qpb $QP -DisableQPOffset  -u 4 -gop_size 32 -dist 4 -num_ref 4 -bref  
-l 1 -hw -async 1 

9.1.2 TU7 
./sample_multi_transcode -i::h264 $AVC_INPUT -o::h265 $TU7_STREAM -cqp -qpi $QP 
-qpp $QP -qpb $QP -DisableQPOffset  -u 7 -gop_size 32 -dist 4 -num_ref 4 -bref  
-l 1 -hw -async 1 

9.2 PREENC + ENCODE 

9.2.1 TU4 encoding 
./sample_hevc_fei -i $YUV_INPUT -w $WIDTH -h $HEIGHT -f $FPS -o $FEI_TU4_STREAM 
-preenc 4 –encode -qp $QP -DisableQPOffset -g 32 -gpb:on -idr_interval 0 -
GopRefDist 4 -NumRefFrame 4 -NumRefActiveP 3 -NumRefActiveBL0 3 -NumRefActiveBL1 
1 -bref -NumFramePartitions 4 -AdaptiveSearch -SearchWindow 5 -l 1 -EncodedOrder 
-MVPBlockSize 1 

9.2.2 TU4 transcoding 
./sample_hevc_fei -i::h264 $AVC_INPUT -o $FEI_TU4_STREAM -preenc 4 –encode -qp 
$QP -DisableQPOffset -g 32 -gpb:on -idr_interval 0 -GopRefDist 4 -NumRefFrame 4 
-NumRefActiveP 3 -NumRefActiveBL0 3 -NumRefActiveBL1 1 -bref -NumFramePartitions 
4 -AdaptiveSearch -SearchWindow 5 -l 1 -EncodedOrder -MVPBlockSize 1 

9.2.3 TU7 encoding 
./sample_hevc_fei -i $YUV_INPUT -w $WIDTH -h $HEIGHT -f $FPS  -o $FEI_TU7_STREAM 
-preenc 4 –encode -qp $QP DisableQPOffset -g 32 -gpb:on -idr_interval 0 -
GopRefDist 4 -NumRefFrame 4 -NumRefActiveP 1 -NumRefActiveBL0 1 -NumRefActiveBL1 
1 -bref -NumFramePartitions 4 -AdaptiveSearch -SearchWindow 5 -ForceCtuSplit -
FastIntraMode -l 1 -EncodedOrder -MVPBlockSize 1 

9.2.4 TU7 transcoding 
./sample_hevc_fei -i::h264 $AVC_INPUT -o $FEI_TU7_STREAM -preenc 4 –encode -qp 
$QP DisableQPOffset -g 32 -gpb:on -idr_interval 0 -GopRefDist 4 -NumRefFrame 4 -
NumRefActiveP 1 -NumRefActiveBL0 1 -NumRefActiveBL1 1 -bref -NumFramePartitions 
4 -AdaptiveSearch -SearchWindow 5 -ForceCtuSplit -FastIntraMode -l 1 -
EncodedOrder -MVPBlockSize 1 

9.3 DSO + ENCODE 

9.3.1 TU4 transcoding 
./sample_hevc_fei_abr -i::h264 $AVC_INPUT -o $ABR_TU4_STREAM -dso 
$5Mb_DSO_STREAM -qp $QP -DisableQPOffset -g 32 -gpb:on -idr_interval 0 -
GopRefDist 4 -NumRefFrame 4 -NumRefActiveP 3 -NumRefActiveBL0 3 -NumRefActiveBL1 
1 -bref -l 1 -DSOMVPBlockSize 7 -NumFramePartitions 4 

https://github.com/Intel-Media-SDK/MediaSDK/tree/mss2018_r2/samples
https://github.com/Intel-Media-SDK/MediaSDK/tree/mss2018_r2/doc/samples
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9.3.2 TU7 transcoding 
./sample_hevc_fei_abr -i::h264 $AVC_INPUT -o $ABR_TU7_STREAM -dso 
$5Mb_DSO_STREAM -qp $QP -DisableQPOffset -g 32 -gpb:on -idr_interval 0 -
GopRefDist 4 -NumRefFrame 4 -NumRefActiveP 1 -NumRefActiveBL0 1 -NumRefActiveBL1 
1 -bref -l 1 -DSOMVPBlockSize 7 -NumFramePartitions 4 -ForceCtuSplit -
FastIntra:I -FastIntra:P -FastIntra:B 

 

9.4 X264 ENCODING 
./x264-r2762-90a61ec --input-res $WIDTHx$HEIGHT --bitrate 40000 --frames 
$NFRAMES --fps $FPS --no-mbtree  -I 32 --no-fast-pskip --no-dct-decimate --no-
scenecut --ref 4 --bframes 3 --b-pyramid normal --b-adapt 0 --open-gop --weightp 
0 --no-weightb --ipratio 1.4 --pbratio 1.3 --merange 24 --me umh --subme 11 --
partitions all --trellis 0 --no-psy --psnr --deblock 0:0 -o $AVC_INPUT 
$YUV_INPUT 

9.5 HM ENCODING 

9.5.1 auxiliary stream for DSO 
#======== File I/O ===================== 
#BitstreamFile                 : str.bin 
#ReconFile                     : rec.yuv 
 
#======== Profile ================ 
Profile                       : main 
 
#======== Unit definition ================ 
MaxCUWidth                    : 32 
MaxCUHeight                   : 32 
MaxPartitionDepth             : 3 
QuadtreeTULog2MaxSize         : 5 
QuadtreeTULog2MinSize         : 2 
QuadtreeTUMaxDepthInter       : 3 
QuadtreeTUMaxDepthIntra       : 3 
 
#======== Coding Structure ============= 
IntraPeriod                   : 32 
DecodingRefreshType           : 1 
GOPSize                       : 32 
ReWriteParamSetsFlag          : 1 
 
IntraQPOffset                 : -1 
LambdaFromQpEnable            : 1 
 
Frame1:  B  4  0 0.0 0.0 0 0 1.0 0 0 0 1 1 -4     0 
Frame2:  B  2  1 0.0 0.0 0 0 1.0 0 0 0 1 2 -2  2    1 2 2 1 1 
Frame3:  B  1  2 0.0 0.0 0 0 1.0 0 0 0 1 3 -1  1  3   1 1 3 1 1 1 
Frame4:  B  3  2 0.0 0.0 0 0 1.0 0 0 0 2 3 -1 -3  1   1 -2 4 1 1 1 0 
Frame5:  B  8  0 0.0 0.0 0 0 1.0 0 0 0 3 3 -4 -6 -8   1 -5 4 1 1 1 0 
Frame6:  B  6  1 0.0 0.0 0 0 1.0 0 0 0 3 4 -2 -4 -6 2  1 2 4 1 1 1 1 
Frame7:  B  5  2 0.0 0.0 0 0 1.0 0 0 0 2 4 -1 -3  1 3  1 1 5 1 1 0 1 1 
Frame8:  B  7  2 0.0 0.0 0 0 1.0 0 0 0 3 4 -1 -3 -5 1  1 -2 5 1 1 1 1 0 
Frame9:  B 12  0 0.0 0.0 0 0 1.0 0 0 0 3 3 -4 -6 -8   1 -5 5 1 1 0 1 0 
Frame10: B 10  1 0.0 0.0 0 0 1.0 0 0 0 3 4 -2 -4 -6 2  1 2 4 1 1 1 1 
Frame11: B  9  2 0.0 0.0 0 0 1.0 0 0 0 2 4 -1 -3  1 3  1 1 5 1 1 0 1 1 
Frame12: B 11  2 0.0 0.0 0 0 1.0 0 0 0 3 4 -1 -3 -5 1  1 -2 5 1 1 1 1 0 
Frame13: B 16  0 0.0 0.0 0 0 1.0 0 0 0 3 3 -4 -6 -8   1 -5 5 1 1 0 1 0 
Frame14: B 14  1 0.0 0.0 0 0 1.0 0 0 0 3 4 -2 -4 -6 2  1 2 4 1 1 1 1 
Frame15: B 13  2 0.0 0.0 0 0 1.0 0 0 0 2 4 -1 -3  1 3  1 1 5 1 1 0 1 1 
Frame16: B 15  2 0.0 0.0 0 0 1.0 0 0 0 3 4 -1 -3 -5 1  1 -2 5 1 1 1 1 0 
Frame17: B 20  0 0.0 0.0 0 0 1.0 0 0 0 3 3 -4 -6 -8   1 -5 5 1 1 0 1 0 
Frame18: B 18  1 0.0 0.0 0 0 1.0 0 0 0 3 4 -2 -4 -6 2  1 2 4 1 1 1 1 
Frame19: B 17  2 0.0 0.0 0 0 1.0 0 0 0 2 4 -1 -3  1 3  1 1 5 1 1 0 1 1 
Frame20: B 19  2 0.0 0.0 0 0 1.0 0 0 0 3 4 -1 -3 -5 1  1 -2 5 1 1 1 1 0 
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Frame21: B 24  0 0.0 0.0 0 0 1.0 0 0 0 3 3 -4 -6 -8   1 -5 5 1 1 0 1 0 
Frame22: B 22  1 0.0 0.0 0 0 1.0 0 0 0 3 4 -2 -4 -6 2  1 2 4 1 1 1 1 
Frame23: B 21  2 0.0 0.0 0 0 1.0 0 0 0 2 4 -1 -3  1 3  1 1 5 1 1 0 1 1 
Frame24: B 23  2 0.0 0.0 0 0 1.0 0 0 0 3 4 -1 -3 -5 1  1 -2 5 1 1 1 1 0 
Frame25: B 28  0 0.0 0.0 0 0 1.0 0 0 0 3 3 -4 -6 -8   1 -5 5 1 1 0 1 0 
Frame26: B 26  1 0.0 0.0 0 0 1.0 0 0 0 3 4 -2 -4 -6 2  1 2 4 1 1 1 1 
Frame27: B 25  2 0.0 0.0 0 0 1.0 0 0 0 2 4 -1 -3  1 3  1 1 5 1 1 0 1 1 
Frame28: B 27  2 0.0 0.0 0 0 1.0 0 0 0 3 4 -1 -3 -5 1  1 -2 5 1 1 1 1 0 
Frame29: I 32 -1 0.0 0.0 0 0 1.0 0 0 0 0 3 -4 -6 -8   1 -5 5 1 1 0 1 0 
Frame30: B 30  1 0.0 0.0 0 0 1.0 0 0 0 3 4 -2 -4 -6 2  1 2 4 1 1 1 1 
Frame31: B 29  2 0.0 0.0 0 0 1.0 0 0 0 2 4 -1 -3  1 3  1 1 5 1 1 0 1 1 
Frame32: B 31  2 0.0 0.0 0 0 1.0 0 0 0 3 4 -1 -3 -5 1  1 -2 5 1 1 1 1 0 
 
#=========== Motion Search ============= 
FastSearch                    : 1 
SearchRange                   : 512 
ASR                           : 0 
MinSearchWindow               : 96 
BipredSearchRange             : 4 
HadamardME                    : 1 
FEN                           : 1 
FDM                           : 1 
 
#=========== Deblock Filter ============ 
LoopFilterOffsetInPPS         : 1 
LoopFilterDisable             : 0 
LoopFilterBetaOffset_div2     : 0 
LoopFilterTcOffset_div2       : 0 
DeblockingFilterMetric        : 0 
 
#=========== Misc. ============ 
InternalBitDepth              : 8 
 
#=========== Coding Tools ================= 
SAO                           : 0 
AMP                           : 0 
TransformSkip                 : 0 
TransformSkipFast             : 0 
SAOLcuBoundary                : 0 
 
#============ Slices ================ 
SliceMode                : 0 
SliceArgument            : 1500 
LFCrossSliceBoundaryFlag : 1 
 
#============ PCM ================ 
PCMEnabledFlag                      : 0 
PCMLog2MaxSize                      : 5 
PCMLog2MinSize                      : 3 
PCMInputBitDepthFlag                : 1 
PCMFilterDisableFlag                : 0 
 
#============ Tiles ================ 
TileUniformSpacing                  : 0 
NumTileColumnsMinus1                : 0 
NumTileRowsMinus1                   : 0 
LFCrossTileBoundaryFlag             : 1 
 
#============ WaveFront ================ 
WaveFrontSynchro                    : 0 
 
#=========== Quantization Matrix ================= 
ScalingList                   : 0 
 
#============ Lossless ================ 
TransquantBypassEnableFlag : 0 
CUTransquantBypassFlagForce: 0 
 
#============ Rate Control ====================== 
RateControl                         : 1 



 

80  HEVC FEI overview 

TargetBitrate                       : 5000000 
KeepHierarchicalBit                 : 2 
LCULevelRateControl                 : 0 
RCLCUSeparateModel                  : 1 
InitialQP                           : 0 
RCForceIntraQP                      : 0 
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10 APPENDIX E. STREAM INFORMATION 

 

 
Name: Beauty 
Description: Closeup on female face, hair waving around. Black background 
Source: http://ultravideo.cs.tut.fi/#testsequences, framerate conversion from 120 fps  to 60 fps 
Copyright: Digiturk 

 

 
Name: big_buck_bunny 
Description: Animation 
Source: https://media.xiph.org/video/derf 
Copyright: Blender Foundation / www.bigbuckbunny.org 

 

http://ultravideo.cs.tut.fi/#testsequences


 

82  HEVC FEI overview 

 
Name: blue_sky 
Description: Top of two trees against blue sky. Camera rotation. 
Source: https://media.xiph.org/video/derf 
Copyright:  

 

 
Name: Bosphorus 
Description: Zoomed in yacht, bridge on background. Panning right 
Source: http://ultravideo.cs.tut.fi/#testsequences, framerate conversion from 120 fps  to 60 fps 
Copyright: Digiturk 

 

http://ultravideo.cs.tut.fi/#testsequences
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Name: bq_terrace 
Description: The camera pans in a diagonal direction from a terrace to the bridge. Plenty of vehicles 
moving on a bridge, and below the bridge are the water.  
Source:  
Copyright: NTT DOCOMO Inc. 

 

 
Name: crowd_run 
Description: A crowd of people running together, with big trees and the blue sky as the background. 
Source: https://media.xiph.org/video/derf 
Copyright: Sveriges Television AB (SVT), Sweden 
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Name: ducks_take_off 
Description: Ducks are taking of water creating ripples effect.- 
Source: https://media.xiph.org/video/derf 
Copyright: Sveriges Television AB (SVT), Sweden 

 

 
Name: elephants_dream 
Description: Animation 
Source: https://media.xiph.org/video/derf 
Copyright: Blender Foundation / Netherlands Media Art Institute / www.elephantsdream.org 
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Name: HoneyBee, HoneyBee_fade25, HoneyBee_fade50, HoneyBee_fade100 
Description: Bee harvesting flowers 
Source: http://ultravideo.cs.tut.fi/#testsequences, framerate conversion from 120 fps  to 60 fps 
Copyright: Digiturk 

 

 
Name: in_to_tree 
Description: Camera approaching an old castle building and a tree next to it.- 
Source: https://media.xiph.org/video/derf 
Copyright: Sveriges Television AB (SVT), Sweden 

 

http://ultravideo.cs.tut.fi/#testsequences
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Name: Jockey, Jockey_fade25, Jockey_fade50, Jockey_fade100 
Description: Horse racing with camera panning to the left to follow 
Source: http://ultravideo.cs.tut.fi/#testsequences, framerate conversion from 120 fps  to 60 fps 
Copyright: Digiturk 

 

 
Name: kimono 
Description: A woman walking slowly toward the camera in front of the woods. - 
Source:  
Copyright: Tokyo Institute of Technology, Nakajima Laboratory 

 

http://ultravideo.cs.tut.fi/#testsequences
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Name: old_town_cross 
Description: Panning view over the old town. Detailed houses, water and moving cars.- 
Source: https://media.xiph.org/video/derf 
Copyright: Sveriges Television AB (SVT), Sweden 

 

 
Name: park_joy 
Description: People are running in front of trees during a left to right camera movement.- 
Source: https://media.xiph.org/video/derf 
Copyright: Sveriges Television AB (SVT), Sweden 
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Name: park_scene 
Description: People cycling in park. Panning right.- 
Source:  
Copyright: Tokyo Institute of Technology, Nakajima Laboratory 

 

 
Name: pedestrian_area 
Description: Shot of a pedestrian area. Low camera position, people pass by very close to the camera. 
Static camera. 
Source: https:/media.xiph.org/video/derf 
Copyright:  

 



   

HEVC FEI overview 89 

 
Name: ReadySteadyGo 
Description: Horse racing track, riders getting ready for launch. The gates open and horses are 
running to the left 
Source: http://ultravideo.cs.tut.fi/#testsequences, framerate conversion from 120 fps  to 60 fps 
Copyright: Digiturk 

 

 
Name: riverbed 
Description: Riverbed seen through the water.- 
Source: https:/media.xiph.org/video/derf 
Copyright:  

 

http://ultravideo.cs.tut.fi/#testsequences
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Name: rush_hour 
Description: Many cars moving slowly, high depth of focus. Fixed camera.- 
Source: https:/media.xiph.org/video/derf 
Copyright:  

 

 
Name: station 
Description: View from a bridge to railway station. Evening shot. Long zoom out. Many details, regular 
structures (tracks). 
Source: https:/media.xiph.org/video/derf 
Copyright:  
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Name: sunflower 
Description: One bee at the sunflower, small color differences and very bright yellow. Fixed camera, 
small global motion. 
Source: https:/media.xiph.org/video/derf 
Copyright:  

 

 
Name: tears-of-steel 
Description: -Movie 
Source: https:/media.xiph.org/video/derf 
Copyright:  Blender Foundation / mango.blender.org 
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Name: TouchDownPass 
Description: American football. 
Source: https:/media.xiph.org/video/derf, conversion from 422 to 420 
Copyright:  NTIA/ITS 

 

 
Name: tractor, tractor_fade25, tractor_fade50, tractor_fade100 
Description: A tractor in a field. Whole sequence contains parts that are very zoomed in and a total 
view. Camera is following the tractor, chaotic object movement, structure of a harvested field.  
Source: https:/media.xiph.org/video/derf 
Copyright:  

 



   

HEVC FEI overview 93 

 
Name: YachtRide 
Description: Zoomed in yacht moves away from shot. Wavy water 
Source: http://ultravideo.cs.tut.fi/#testsequences, framerate conversion from 120 fps  to 60 fps 
Copyright: Digiturk 

  

http://ultravideo.cs.tut.fi/#testsequences
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LEGAL DISCLAIMER 

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, 

EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS 

GRANTED BY THIS DOCUMENT.  EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR 

SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR 

IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR 

WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR 

INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. 

 

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR 

INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A 

SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR. 

 

Intel may make changes to specifications and product descriptions at any time, without notice. 

Designers must not rely on the absence or characteristics of any features or instructions marked 

"reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility 

whatsoever for conflicts or incompatibilities arising from future changes to them. The information here 

is subject to change without notice. Do not finalize a design with this information.  

 

The products described in this document may contain design defects or errors known as errata which 

may cause the product to deviate from published specifications. Current characterized errata are 

available on request.  

 

Contact your local Intel sales office or your distributor to obtain the latest specifications and before 

placing your product order.  

 

Copies of documents which have an order number and are referenced in this document, or other Intel 

literature, may be obtained by calling 1-800-548-4725, or by visiting Intel's Web Site. 

MPEG is an international standard for video compression/decompression promoted by ISO. 
Implementations of MPEG CODECs, or MPEG enabled platforms may require licenses from various 
entities, including Intel Corporation. 

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in 
the United States and other countries. 

*Other names and brands may be claimed as the property of others. 

Copyright © 2018, Intel Corporation. All Rights reserved. 

  

http://www.intel.com/
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OPTIMIZATION NOTICE 

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for 

optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and 

SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or 

effectiveness of any optimization on microprocessors not manufactured by Intel.  

 

Microprocessor-dependent optimizations in this product are intended for use with Intel 

microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel 

microprocessors. Please refer to the applicable product User and Reference Guides for more 

information regarding the specific instruction sets covered by this notice. 

Notice revision #20110804 
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POST-PATCH DISCLAIMER 

The benchmark results reported below may need to be revised as additional testing is conducted. The 

results depend on the specific platform configurations and workloads utilized in the testing, and may not 

be applicable to any particular user’s components, computer system or workloads. The results are not 

necessarily representative of other benchmarks and other benchmark results may show greater or 

lesser impact from mitigations. 
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Software and workloads used in performance tests may have been optimized for performance only on 

Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific 

computer systems, components, software, operations and functions. Any change to any of those factors 

may cause the results to vary. You should consult other information and performance tests to assist you 

in fully evaluating your contemplated purchases, including the performance of that product when 

combined with other products.  For more information go to www.intel.com/benchmarks. 

 

 

http://www.intel.com/benchmarks



