
Overview

of the Flexible Encode Infrastructure
for High Efficiency Video Codec

October 2018

2 HEVC FEI overview

TABLE OF CONTENTS

1 Introduction ... 5

1.1 Acronyms And Abbreviations.. 6

2 HEVC FEI Overview ... 7

3 HEVC FEI Controls .. 10

3.1 External MV Predictors .. 10

3.2 Internal MV Predictors ... 15

3.3 Force CTU To Intra/Inter ... 18

3.4 Number of Frame Partitions ... 22

3.5 Force CTU Split .. 24

3.6 Fast Intra Mode .. 26

3.7 Motion Estimation Controls .. 28

3.7.1 Search Window Size ... 28

3.7.2 Search Path .. 30

3.7.3 Adaptive Search .. 33

3.7.4 Search Presets .. 34

3.8 Performance/VQ Tradeoff .. 35

4 Performance Bottlenecks ... 38

4.1 AVC to TU4 HEVC Transcoding ... 39

4.2 AVC to TU7 HEVC Transcoding ... 40

4.3 HEVC to TU7 HEVC Transcoding ... 41

5 Sample Application ... 42

HEVC FEI overview 3

5.1 Decode Stream Out .. 43

5.2 Look Ahead BRC ... 44

5.2.1 Algorithm .. 45

5.2.2 BRC controls ... 51

5.2.3 Scene Change Handling .. 55

5.2.4 Visual Quality .. 57

6 Appendix A. Sample Application Details 58

6.1 Decode Stream-Out .. 58

6.2 MV Repacking .. 60

6.2.1 First mode .. 60

6.2.2 Second mode .. 62

6.3 LA BRC ... 64

7 Appendix B. Look Ahead BRC Algorithm 65

7.1 Algorithm .. 65

7.2 Pixel Propagation .. 72

8 Appendix C. System configuration 76

9 Appendix D. Command Lines ... 77

9.1 Conventional transcoding .. 77

9.1.1 TU4 .. 77

9.1.2 TU7 .. 77

9.2 PreENC + ENCODE ... 77

9.2.1 TU4 encoding .. 77

9.2.2 TU4 transcoding .. 77

9.2.3 TU7 encoding .. 77

9.2.4 TU7 transcoding .. 77

4 HEVC FEI overview

9.3 DSO + ENCODE ... 77

9.3.1 TU4 transcoding .. 77

9.3.2 TU7 transcoding .. 78

9.4 x264 Encoding ... 78

9.5 HM Encoding .. 78

9.5.1 auxiliary stream for DSO ... 78

10 Appendix E. Stream information 81

HEVC FEI overview 5

1 INTRODUCTION

Intel® Media Server Studio provides rich set of interfaces to build different kinds of video processing

applications. In this paper, we discuss one of them, Flexible Encode Infrastructure for High Efficiency

Video Codec (HEVC FEI). This interface exposes low-level controls that are intended to improve the

performance, visual quality, and flexibility of conventional SDK encoder by utilizing customer IP.

No prior knowledge of SDK or FEI is required to read this paper. The first chapters give a general idea on

how an application can tune a hardware-accelerated video encoder and how different controls affect

encoding quality and performance. At the same time, this paper can be used as developer’s guide to

build efficient transcoding pipeline. In the second half of the paper, we discuss a sample application that

was specifically written to demonstrate HEVC FEI usage.

This paper starts with an overview of the HEVC FEI architecture and how it is mapped to conventional

encoder building blocks. Next, the major part of the paper describes HEVC FEI controls and their impact

on performance and visual quality. Then we discuss performance bottlenecks typical for common

transcoding scenarios. We finish this paper with a deep discussion of a sample application, providing

examples of how to reuse information from the input bitstream to improve visual quality using FEI and

how to build efficient bitrate control.

6 HEVC FEI overview

1.1 ACRONYMS AND ABBREVIATIONS
BRC Bitrate control

CTU Coding tree unit

CU Coding unit

ENC First part of the encoding process, including motion estimation and mode decision

EU Execution unit

HME Hierarchical motion estimation

HW BRC Built-in driver BRC, used by conventional encoder

LA BRC Look ahead bitrate control

ME Motion estimation

MSE Mean Squared Error, a measure of distortion between source and encoded frames

MV Motion vector

MVP Motion vector predictor

NNZ
Number of non-zero luma transform coefficients, used as visual distortion
approximation

PAK
Last part of the encoding process, including motion compensation, transform,
quantization, and entropy coding

QP Quantization parameter

RDO Rate distortion optimization

SSC Sum of squared luma transform coefficients, used as a visual distortion approximation
TU1, TU4,
TU7 SDK encoder presets:: TU1 quality, TU4 balanced, TU7 speed mode

VQ visual quality

HEVC FEI overview 7

2 HEVC FEI OVERVIEW

FEI is built on top of the conventional hardware-accelerated encoder and exposes more controls over

internal building blocks. These controls facilitate integration of customer algorithms into the encoding

process. In addition, FEI provides standalone preprocessing functionality that can be used to gather

different kind of statistics about input frame (e.g., frame complexity).

Figure 1 is a diagram of the conventional encoder. The encoding process starts with a hierarchical

motion estimation (HME) that is done on the set or downscaled frames. Downscale ratios and the

number of layers may differ depending on the original frame resolution and encoder settings, but in

most cases at least two stages are present. ME starts on the smallest 16x downscaled frame, and then

refines coarse MVs found in the first stage on a 4x downscaled frame. It concludes on the original

resolution. After that, the encoder performs an intra-prediction stage to find the best intra-mode, and

then makes a mode decision. Other stages are similar to FEI and conventional encoders and are not

discussed here.

Figure 1. Conventional encoder, where
 IP Intra prediction
 MD Mode decision
 HME Hierarchical motion estimation
 ME Motion estimation
 T, T-1 Transform and inverse transform
 Q, Q-1 Quantization and inverse quantization
 COD Entropy coding
 MC Motion compensation

Figure 2 shows how preprocessing works. It uses the same hardware that a conventional encoder uses,

but works significantly faster due to the reduced amount of processing. First, HME depth is limited to a

single 4x layer followed by ME on the original resolution. Secondly, no dependencies between blocks are

taken into account, making ME significantly faster. Finally, no actual mode decision is made here. The

best inter-prediction partition is selected and the rest of the encoding stages, like transform and

quantization, are completely skipped.

8 HEVC FEI overview

Figure 2. Preprocessing stage, also known as PreENC. MD and ME stages here are faster than in a conventional encoder.

Figure 3 is a diagram of the FEI encoder. In contrast to the conventional encoder, it does not have the

HME stage and needs coarse MVs from application to do ME. (See “External MV Predictors” for details.)

It also exposes additional controls to fine-tune motion estimation and mode decision. (See “HEVC FEI

Controls” for details.)

Figure 3. FEI ENCODEr. There is no HME stage. More controls over encoding process are exposed.

Figure 4 shows a typical encoding scenario that uses the PreENC and FEI encoders (also known as the

PreENC + ENCODE pipeline). In the first stage of this pipeline, PreENC gathers preliminary statistics

about the input frame. Then, it is fed to the customer algorithm that computes optimal control

parameters for the FEI encoder. In this stage, actual VQ and performance are improved. Then, the

computed parameters are sent to the encoder.

Figure 4. Encoding pipeline, PreENC+ENCODE. PreENC is used as a source of information for the customer algorithm that
improves VQ.

For the transcoding use case shown on Figure 5, it is possible to use information from the coded input

stream to guide the FEI encoder in the motion estimation and mode decision stages. In this case,

statistics about the input frame come not from the PreENC stage, but directly from the decoder. In this

HEVC FEI overview 9

paper, we use term Decode Stream Out (DSO) for this kind of statistics and call this pipeline DSO +

ENCODE. (See “Decode Stream Out” for details.)

Figure 5. Transcoding pipeline, DSO+ENCODE. Decode Stream is used as the source of information for the customer algorithm
that improves VQ.

10 HEVC FEI overview

3 HEVC FEI CONTROLS

In this chapter, we discuss different controls over the encoding process exposed by the HEVC FEI

interface. This description augments the HEVC FEI Reference Manual by illustrating the impact of each

control on visual quality and performance. It also gives some recommendations on how to use these

controls to achieve different goals like runtime performance/quality tradeoff.

BD rate is used as a visual quality metric. If not specified otherwise, “balanced” (TU4), a preset of the

legacy encoder, is used as a base point for BD rate calculation. To avoid bitrate control influence,

measurements were done in constant QP mode. Four-point RD curves were built based on the average

PSNR, which included luma and chroma values. A positive BD rate means that HEVC FEI quality is better

than conventional transcoding/encoding.

Density was selected as a performance metric. In this context, it represents the number of simultaneous

transcoding that can run on the same system in real time. A fractional part in density means that last

channel could not achieve real time. For example, if the density is 3.5, then three channels run at 30fps

and one runs at 15 fps.

We evaluated 25 full HD streams with different content, including fast and slow motion, static content,

and highly irregular scenes like waves on the water. (See a detailed description in Appendix E. Stream

information.”) In addition, nine artificial streams were used that were generated from original content

by applying a fade in/out affect every 25, 50, and 100 frames. Note that during encoding evaluation, no

special tools (like weighted prediction) were used. Encoder settings were exactly the same for all

streams in the test pool.

Two pipelines were used:

1. Conventional encoding from the YUV source to HEVC bitstream, based on PreENC followed by

the ENCODE pipeline (see the “HEVC FEI Overview” chapter for details).

2. Transcoding from the AVC or HEVC source to the HEVC bitstream, based on the ENCODE

pipeline with additional control parameters computed from DSO (see the “Sample Application”

chapter for details). The AVC source bitstream was encoded by x264 encoder, the HEVC source

bitstream and the auxiliary bitstream for DSO were encoded by HM16.17 encoder. To match the

reference lists between the HM and FEI encoders, we made minor modifications to HM. We

used 40Mbps source streams and 5Mbps auxiliary stream.

We used a single GOP pattern, IbBbP, where the P and middle B frames were used as reference. (The full

test configuration is described in Appendix C. System configuration” and in Appendix D. Command

Lines.”)

3.1 EXTERNAL MV PREDICTORS
The motion estimation part of a GPU-accelerated encoder has quite a limited search range. To catch

long MVs, the encoder has to start a search in a reference frame, not from a collocated block, offsetting

it by a motion vector predictor (MVP). A conventional encoder uses HME to find such predictors, but the

FEI encoder relies on the application to provide them. From zero to four MVPs can be provided for each

https://github.com/Intel-Media-SDK/MediaSDK/blob/master/doc/mediasdkhevcfei-man.pdf

HEVC FEI overview 11

block of 16x16 pixels. Each MVP specifies the location of the search window in the reference frame and

reference frame index.

(See the “HEVC FEI Overview” chapter for details about HME, the “Search Window Size” chapter for

supported search window sizes, and the “Internal MV Predictors” chapter for a list of additional internal

MVPs.)

MVPs can be used to achieve different goals.

 Improve objective VQ. A mode decision made in a conventional encoder may be suboptimal. For

example, an inter-prediction with a big MV difference may be selected instead of the more

efficient intra-prediction or encoder may choose an inter-prediction from less efficient in the

RDO sense location. In these cases, by providing a “good” MVP, application can prevent the

encoder from choosing inefficient MVs. (See the “Force CTU To Intra/Inter” chapter for details

how to force encoder to use specific prediction type.)

 Improve performance. By using MVPs, the application can control how much time the encoder

spends on motion estimation. A conventional encoder estimates motion for several predictors

for each reference frame. The FEI encoder runs a motion estimation only for provided MVPs,

and the application can limit the number of searches, leading to the single best MVP.

 Improve subjective VQ. A conventional encoder does not use chroma channels during motion

estimation, which in some cases may lead to visible color artifacts. Application can guide the FEI

encoder with proper MVP to prevent such artifacts. MVP can also be useful for low-bitrate cases

to keep the MV field even in areas with uniform textures. That, in turn, helps to improve

subjective VQ.

Figure 6 shows how MVP affects performance and quality for different pipelines. Three pipelines are

shown:

1. HEVC HW is conventional encoding. Its “balanced” TU4 preset is chosen as a reference point

(i.e., zero BD rate). As we can see from the chart, in comparison to the ”balanced” preset

“speed” one increases density from 3 to 12 channels and degrades VQ by 25%.

2. PreENC+HEVC FEI. In this mode, PreENC is run on four times downsampled frames, then the FEI

encoder is called with MVPs from the first stage. This is the slowest mode due to PreENC

overhead, and it has the closest to conventional encoder VQ because no additional IP is present

in this pipeline―just a simple MVP repack from PreENC to ENCODE layout.

3. DSO+HEVC FEI. This is the most interesting case. Here, we calculate MVPs from DSO data

extracted from auxiliary stream and feed them to FEI encoder (see the “Decode Stream Out” for

details). Because the mode decision here has been made by the RDO-based encoder, we have

better VQ than conventional encoder for both “balanced” and “speed” presets. For “speed”

mode in this pipeline, the FEI encoder is significantly slower than a conventional encoder. This is

because DSO processing is not optimized for performance, runs on CPU, and becomes a

bottleneck for high-density cases.

12 HEVC FEI overview

Figure 6. Impact of MVPs on VQ and density for different pipelines. Blue – conventional encoder, gray – FEI with MVPs from
PreENC, yellow – FEI encoder with MVPs from DSO. Higher BD rate and density is better.

In addition to these pipelines, Figure 7 shows the HEVC FEI encoder without MVPs. This is the fastest

mode, faster than conventional encoder by about 0.5 channel on TU4 and 1 channel on TU7, because

the FEI encoder does less motion estimation here, just estimating internal MVPs, with no external MVPs

and no HME stage. It also has the lowest visual quality due to significant degradation on high-motion

streams where the encoder could not catch actual motion. Still, this mode can be used for slow-motion

content.

HEVC FEI overview 13

Figure 7. Impact of MVPs on VQ and density for different pipelines. Orange line is FEI encoder without MVPs.

Target Usage Pipeline Density BD Rate

4

HEVC HW 3.26 0 %
HEVC FEI 3.68 -23.64 %
PreENC + HEVC FEI 2.74 -0.27 %
DSO + HEVC FEI 3.06 1.76 %

7

HEVC HW 12.37 -24.53 %
HEVC FEI 13.18 -53.26 %
PreENC + HEVC FEI 10.62 -24.36 %
DSO + HEVC FEI 8.59 -21.80 %

Table 1 Impact of MVPs on VQ and density for different pipelines.

Table 2 shows the BD rate gain/loss for each stream from the test pool for the three pipelines described

above, PreENC+ENCODE, DSO+ENCODE, and ENCODE without MVPs. Each pipeline was measured for

two presets, “balanced” TU4 and “speed” TU7. As we can see, the PreENC + ENCODE pipeline has no VQ

gain in comparison to conventional transcoding, but DSO has. It is especially noticeable on streams with

high motion like “Jockey,” streams with a fade in/out effect. It is less, but still noticeable, on streams

with irregular content like “riverbed.” ENCODE without MVP shows acceptable visual quality on slow-

motion streams like “Beauty” and “ducks_take_off,” but huge degradation on fast-motion streams like

“Jockey.” “HoneyBee” with fades looks very interesting. FEI ENCODE without MVP has better VQ than

VQ of the conventional encoder. This is because the encoder tends to use long and arbitrary motion

vectors on such streams. Reducing the search range excludes such long MVs from consideration and the

14 HEVC FEI overview

encoder uses intra-prediction instead of inter-prediction with long MVs (see the chapter “Force CTU To

Intra/Inter” for a discussion of how intra/inter prediction impacts VQ).

Table 2. BD-rates for PreENC+ENCODE, DSO+ENCODE and ENCODE only pipelines. For TU7 BD rate is calculated relative to TU7
preset of conventional encoder. Color bars that show VQ difference have the same scale for PreENC and DSO, but different for
ENCODE only.

(For an API description look for mfxExtFeiHevcEncMVPredictors in “Reference Manual for HEVC

FEI.”)

Sequence PreENC DSO No MVP PreENC DSO No MVP

Beauty -0.16% 0.28% -0.65% -0.26% -0.95% -3.08%

big_buck_bunny -0.24% -0.30% -6.32% -0.41% -0.67% -6.65%

blue_sky 0.11% 0.32% -60.22% -0.14% 0.05% -91.08%

Bosphorus 0.00% 0.15% -19.28% -0.48% -0.26% -20.55%

bq_terrace 0.48% 0.12% -7.09% 0.11% 0.11% -7.47%

crowd_run -0.04% -0.01% -3.44% 0.20% 0.15% -3.80%

ducks_take_off -0.04% -0.26% -0.03% -0.07% -0.28% -0.07%

elephants_dream -0.21% -0.29% -2.18% -0.39% -0.49% -2.95%

HoneyBee -0.20% -0.26% -0.75% -0.11% -0.34% -0.70%

in_to_tree 0.01% -0.06% -8.25% 0.26% 0.13% -9.09%

Jockey 0.99% 10.72% -95.50% -0.92% 9.22% -89.41%

kimono1 -0.09% 0.20% -12.13% -0.13% -0.19% -15.32%

old_town_cross 0.07% 0.02% -0.49% 0.13% 0.06% -0.79%

park_joy -0.02% 0.16% -6.48% 0.03% 0.25% -7.78%

park_scene -0.31% -0.30% -5.72% -0.08% -0.36% -6.84%

pedestrian_area -0.27% 0.08% -12.46% -0.64% -1.43% -15.83%

ReadySteadyGo -0.87% 2.62% -99.95% -0.64% 1.61% -97.30%

riverbed 0.16% 2.22% 1.79% -0.39% 1.50% 1.51%

rush_hour -0.27% -0.94% -8.62% -0.38% -1.01% -9.91%

station2 -0.05% -0.01% -12.47% -0.14% -0.11% -14.93%

sunflower 0.11% 0.33% -30.12% -0.02% -0.15% -32.72%

tears-of-steel -0.62% 1.23% -20.32% -1.26% 0.74% -22.10%

TouchDownPass 0.41% 0.44% -29.69% 0.07% -0.07% -31.29%

tractor -0.47% 0.98% -95.22% -0.32% 0.91% -109.68%

YachtRide -0.60% -0.43% -18.88% -0.46% -0.63% -20.60%

HoneyBee_fade100 -0.82% 1.83% 1.86% -2.81% 3.83% 4.49%

HoneyBee_fade50 -0.19% 5.88% 5.28% -3.06% 9.58% 9.27%

HoneyBee_fade25 -0.13% 7.06% 6.15% -3.04% 11.99% 12.14%

Jockey_fade100 -0.04% 8.09% -46.99% -1.89% 8.12% -41.24%

Jockey_fade50 -0.74% 6.64% -42.13% -2.73% 8.48% -34.19%

Jockey_fade25 -1.70% 6.14% -27.29% -3.75% 8.25% -19.48%

tractor_fade100 -0.37% 1.49% -69.13% -0.87% 1.75% -77.15%

tractor_fade50 -1.24% 2.77% -45.34% -2.02% 3.99% -45.49%

tractor_fade25 -1.79% 3.09% -31.59% -3.05% 4.53% -29.86%

Average -0.27% 1.76% -23.64% -0.87% 2.01% -24.70%

TU4 TU7

https://github.com/Intel-Media-SDK/MediaSDK/blob/master/doc/mediasdkhevcfei-man.pdf
https://github.com/Intel-Media-SDK/MediaSDK/blob/master/doc/mediasdkhevcfei-man.pdf

HEVC FEI overview 15

3.2 INTERNAL MV PREDICTORS
Apart from external MV predictors, FEI encoder also uses MV predictors derived from already encoded

neighbor blocks. For streams with slow or smooth motion, that may be enough to provide good visual

quality for the encoded stream, even without external predictors. On streams with high motion or with

poor MVPs, it helps to improve visual quality.

Internal MVPs are calculated for the same block size as external ones (i.e., 16x16 pixels). Three neighbor

blocks are used, left, top, and top right. They may belong to the current or a neighbor CTU. First, two

predictors for reference frames with zero index are calculated. The first predictor is the median from

three neighbors, according to the AVC standard. The second predictor is one of the neighbor MVs that is

farthest from the median. Then two more predictors are calculated for the reference frames with

indexes 1 and 2 from reference list L0. Note that the FEI encoder supports only three reference frames

in L0 and one in L1 list, so these MVPs cover all reference frames.

If neighbor MVs are unavailable (for example, because block is located on the frame boundary or

reference index of neighbor does not match to current reference), then zero MV is used. The encoder

doesn’t check the same MV predictors twice, so if no neighbor is available, only one zero MVP is

estimated.

If the application can provide good MVPs, then the recommendation is to disable internal MVPs to

speed up encoding. Disabling these internal MVPs has no impact on skip and merge modes. They will

still be estimated.

Figure 8 and Figure 9 show the VQ and performance impact of this control. As we can see, disabling

internal MVPs for the PreENC + ENCODE pipeline increases performance but decreases visual quality,

because PreENC MVPs are not good enough. For the DSO case, the result is different. Disabling of

internal predictors improves both VQ and performance. It is because the reference encoder makes

better mode decisions. Also, limiting the number of MVPs to search decreases the probability for the FEI

encoder to make a suboptimal decision.

Note that disabling both internal and external MVPs drastically decreases VQ and should never be used.

16 HEVC FEI overview

Figure 8. Impact of internal MVP control on VQ and density for PreENC + ENCODE pipeline

Internal MVPs Density BD Rate

Enabled 2.74 -0.27 %
Disabled 2.86 -0.76 %

Table 3. Impact of internal MVP control on VQ and density for PreENC + ENCODE pipeline

HEVC FEI overview 17

Figure 9. Impact of internal MVP control on VQ and density for DSO + ENCODE pipeline

Internal MVPs Density BD Rate

Enabled 3.06 1.76 %
Disabled 3.21 2.29 %

Table 4. Impact of internal MVP control on VQ and density for DSO + ENCODE pipeline

For API description look for mfxExtFeiHevcEncFrameCtrl::MultiPredL0 and MultiPredL1 in

“Reference Manual for HEVC FEI”.

https://github.com/Intel-Media-SDK/MediaSDK/blob/master/doc/mediasdkhevcfei-man.pdf

18 HEVC FEI overview

3.3 FORCE CTU TO INTRA/INTER
This control is intended for use cases where the application has additional information about the

encoded frame from which the prediction type may be deduced. For example, in the case of a screen

capture, the CTU belonging to the just-appearing window will probably be efficiently coded as intra and

unchanged background as inter.

This control can improve both visual quality and performance. VQ gain comes from making an optimal

mode decision and performance gain comes from a reduced number of prediction types to be

estimated.

The VQ and performance impact of this control is shown in Figure 10 and in Table 6. We used the DSO +

ENCODE pipeline for this measurement. Force flag values were deduced from DSO data by the next

algorithm:

 If all CUs in the current CTU of a 5Mb auxiliary stream are intra-coded, then the force to Intra

flag was set.

 If all CUs in the current CTU were inter coded, then the force to Inter flag was set.

 Otherwise, both flags were reset and the mode decision was left to the encoder.

It is also possible to use a statistic from PreENC to deduce the prediction type, but we did not try this.

This algorithm works only if the target bitrate is close to the bitrate of the auxiliary stream. Because of

this, we used three target bitrates: 4Mbps, 6MBps, and 8Mbps. To eliminate the bitrate control impact

on the results, all encoding was done in constant QP mode. Different QP values were selected for

different streams to make the bitrate as close to the target bitrate as possible.

As can we can from Figure 10 and Table 6, this very simple algorithm gives a noticeable VQ gain for the

force to intra flag case. We especially achieved a big gain on streams with irregular content like

“riverbed,” where the encoder tends to use inter prediction with long and arbitrary motion vectors.

Good gain was also achieved on streams with fades. The faster the fade, the more significant the gain

achieved. This is for the same reasons as the previous case. The encoder tends to use inter prediction in

cases where intra is more efficient.

HEVC FEI overview 19

Figure 10. Impact of force to intra and inter flags on VQ and density for DSO + ENCODE pipeline

Force Flags Density BD Rate

No force flags 3.06 1.70 %
Force CTU to Intra 2.99 2.20 %
Force CTU to Inter 3.30 -4.73 %

Table 5. Impact of force to intra and inter flags on VQ and density for DSO + ENCODE pipeline

20 HEVC FEI overview

Table 6. BD-rates for DSO + ENCODE pipeline, with enabled force to intra and inter flags compared to conventional transcoding

On the other hand, this algorithm does not work for force to inter flag. In most cases, VQ became worse

and on “HoneyBee,” with fades, the VQ degradation was disastrous. Analysis of the encoded streams

showed that for some CTUs, the FEI encoder could not find an efficient inter prediction mode. For

example, the reference encoder may use 32x32 partition, but FEI four 16x16 partitions, the reference

encoder may use bidirectional prediction, but FEI may use unidirectional, and the MV itself can be

suboptimal in length and direction. That is especially noticeable on streams with fades, where MVs often

point not to the similar texture, but to the region with similar luminosity. All of these lead to costly inter

predictions. And the FEI encoder chooses intra prediction for such CTUs and gets good overall VQ.

However, if force to inter flag is on, then the encoder is forced to use a suboptimal mode and loses

visual quality. Figure 11 shows the reference encoder decision, 32x32 partition with correct MVs

pointing to the proper location in the reference frame, a very efficient mode. In Figure 12, the same CTU

is shown. The FEI encoder could not find a good inter prediction and switched to intra instead. The result

Sequence Disabled ctrls ForceToIntra ForceToInter

Beauty 0.56% 0.90% -3.98%

big_buck_bunny -1.21% -1.01% -2.05%

blue_sky 0.11% 0.01% -0.82%

Bosphorus -0.09% 0.25% -2.10%

bq_terrace 0.27% 0.27% 0.40%

crowd_run 0.32% 0.21% 0.22%

ducks_take_off 0.02% -0.51% -3.76%

elephants_dream -0.36% -0.59% -2.56%

HoneyBee -0.07% -0.09% 0.35%

in_to_tree -0.20% -1.56% 0.25%

Jockey 10.20% 11.02% 5.37%

kimono1 -0.12% -0.41% -3.48%

old_town_cross -0.19% -0.48% 0.69%

park_joy 0.73% 0.80% 0.45%

park_scene -0.24% -0.28% -0.34%

pedestrian_area 0.25% -0.21% -2.09%

ReadySteadyGo 2.52% 2.11% 2.51%

riverbed 3.30% 7.79% 0.75%

rush_hour -0.30% -0.53% -2.60%

station2 -0.10% -0.17% -0.87%

sunflower 1.08% 0.93% 0.46%

tears-of-steel 0.37% -0.18% -1.26%

TouchDownPass 0.69% 1.01% 0.34%

tractor 0.76% 0.62% -0.47%

YachtRide -0.37% -0.85% -0.44%

HoneyBee_fade100 2.63% 2.79% -11.36%

HoneyBee_fade50 4.91% 4.92% -46.07%

HoneyBee_fade25 5.17% 5.16% -86.43%

Jockey_fade100 8.86% 12.67% 3.62%

Jockey_fade50 6.89% 11.54% -0.40%

Jockey_fade25 6.26% 11.21% 2.05%

tractor_fade100 1.02% 1.17% -0.65%

tractor_fade50 1.97% 3.14% -4.03%

tractor_fade25 2.01% 3.06% -2.66%

Average 1.70% 2.20% -4.73%

HEVC FEI overview 21

is not as good as the inter prediction on Figure 11, but still acceptable. Figure 13 shows force to inter

case, where the encoder is forced to use a bad decision, leading to a disastrous VQ loss.

Performance gain comes from reducing the amount of work the encoder does during the mode decision.

For forced to inter CTUs, intra estimation is completely skipped (i.e., the total number of modes the

encoder checks decreases). Because the relative number of inter CTUs is high, the performance gain is

also significant.

Figure 11. Reference encoder, CTU 367

Figure 12. FEI encoder, force flags are
OFF, same CTU

Figure 13. FEI encoder, force to inter
flag is ON, same CTU

Note that the conclusion above does not mean that force to intra flag can be used only for VQ and force

to inter only for performance improvement, or that the FEI encoder has suboptimal motion estimation.

It just illustrates that these flags affect both VQ and performance and that the algorithm described

above is not good enough. A more complicated algorithm is required to get both VQ and performance

gains.

(For an API description, see mfxFeiHevcEncCtuCtrl::ForceToIntra/ForceToInter in

“Reference Manual for HEVC FEI.”)

https://github.com/Intel-Media-SDK/MediaSDK/blob/master/doc/mediasdkhevcfei-man.pdf

22 HEVC FEI overview

3.4 NUMBER OF FRAME PARTITIONS
The HEVC FEI encoder shares compute resources with the 3D pipeline and, on a system with a high

number of EUs, performance is usually limited by a lack of parallelism in processed frames rather than a

lack of resources. (See also the “Performance Bottlenecks” chapter.) To mitigate this lack of parallelism,

the encoder divides the frame into several regions and processes them in parallel. Note that these

regions do not relate to tiles or slices defined by the HEVC standard. This is an encoder-specific notion

and, apart from this control, it is not visible to the application in any way.

The FEI encoder supports from one to eight regions. The more regions are used, the more speed-up can

be achieved. As we can see from Figure 14 and Figure 15, changing the number of regions from one to

eight increases performance by 4x and decreases VQ by 4% for the PreENC pipeline and 3% for DSO. The

default number of regions for the FEI encoder is four.

This is frame-level control. Application can turn it on and off depending on the frame type, current

system workload, or any other criteria. (See also the “Performance/VQ Tradeoff” chapter.)

Figure 14. Impact of number of frame partitions on VQ and density for PreENC + ENCODE pipeline

HEVC FEI overview 23

Number of Frame Partitions Density BD Rate

1 0.98 2.13%

2 1.69 0.90%

4 2.74 -0.27%

8 4.07 -2.29%
Table 7. Impact of number of frame partitions on VQ and density for PreENC + ENCODE pipeline

Figure 15. Impact of number of frame partitions on VQ and density for DSO + ENCODE pipeline

Number of Frame Partitions Density BD Rate

1 1.11 3.45%

2 1.88 2.60%

4 3.06 1.76%

8 4.50 0.17%
Table 8. Impact of number of frame partitions on VQ and density for DSO + ENCODE pipeline

(For an API description look for mfxExtFeiHevcEncFrameCtrl:: NumFramePartitions in

“Reference Manual for HEVC FEI.”)

TU4

TU7

1
2

4
8

-30.00%

-25.00%

-20.00%

-15.00%

-10.00%

-5.00%

0.00%

5.00%

0 2 4 6 8 10 12

B
D

-r
at

e

Density

DSO + HEVC FEI NumFramePartitions

https://github.com/Intel-Media-SDK/MediaSDK/blob/master/doc/mediasdkhevcfei-man.pdf

24 HEVC FEI overview

3.5 FORCE CTU SPLIT
This is another control that is intended to enable more parallelism during encoding. It is similar to

Number of Frame Partitions, but instead of dividing the frame, it divides each 32x32 CTU into four CUs.

That means that in an encoded bitstream, there will be no CUs larger than 16x16. Each CTU will be

divided at least one time. This division creates more opportunities for parallel processing. Encoding of

the 16x16 CU may start before the complete neighbor 32x32 CTU has been encoded. Another

performance improvement comes from a reduced number of possible partitions to check. The 32x32

mode is not evaluated in this case.

Figure 16 and Figure 17 show the VQ and performance impact of this control.

This is frame-level control. The application can turn it on and off depending on the frame type or current

system workload, or any other criteria. (See also the “Performance/VQ Tradeoff” chapter.) Note that

this control has no effect on I frames.

Figure 16. Impact of force CTU split on VQ and density for PreENC + ENCODE pipeline

Force CTU Split Density BD Rate

Disabled 2.74 -0.27 %
Enabled 4.79 -6.35 %

Table 9. Impact of force CTU split on VQ and density for PreENC + ENCODE pipeline

HEVC FEI overview 25

Figure 17. Impact of force CTU split on VQ and density for DSO + ENCODE pipeline

Force CTU Split Density BD Rate

Disabled 3.06 1.76 %
Enabled 5.40 -3.42 %

Table 10. Impact of force CTU split on VQ and density for DSO + ENCODE pipeline

(For an API description, look for mfxExtFeiHevcEncFrameCtrl::ForceCtuSplit in the Reference

Manual for HEVC FEI.)

https://github.com/Intel-Media-SDK/MediaSDK/blob/master/doc/mediasdkhevcfei-man.pdf
https://github.com/Intel-Media-SDK/MediaSDK/blob/master/doc/mediasdkhevcfei-man.pdf

26 HEVC FEI overview

3.6 FAST INTRA MODE
As follows from the name, this flag can be used to select different Intra prediction algorithms in the

encoder. The FEI encoder does intra prediction in two steps. In the first step, nine AVC-specific intra

prediction modes are estimated using fixed-function hardware. Then, additional refinement is done on

EUs to select one of the 35 HEVC-specific intra prediction modes. If this flag is set, then the encoder

skips the second step and just maps the AVC mode chosen in the first step to the corresponding HEVC

mode without any additional refinement. That significantly improves performance, but obviously harms

VQ.

Figure 18 and Figure 19 show the VQ and performance impact of Fast Intra Mode control on the

encoding process. As we can see, this is very powerful control, with significant impacts on both VQ and

performance.

This is frame level control. The application can turn it on and off depending on the frame type, current

system workload, or any other criteria. (See also the “Performance/VQ Tradeoff” chapter.)

Figure 18. Impact of fast intra mode control on VQ and density for PreENC + ENCODE pipeline

Fast Intra Mode Density BD Rate

Disabled 2.74 -0.27 %
Enabled 4.16 -15.70 %

Table 11. Impact of fast intra mode control on VQ and density for PreENC + ENCODE pipeline

HEVC FEI overview 27

Figure 19. Impact of fast intra mode control on VQ and density for DSO + ENCODE pipeline

fast intra mode density BD rate

disabled 3.06 1.76 %
enabled 4.74 -13.92 %

Table 12. Impact of fast intra mode control on VQ and density for DSO + ENCODE pipeline

(For an API description, look for mfxExtFeiHevcEncFrameCtrl:: FastIntraMode in “Reference

Manual for HEVC FEI.”)

TU4

TU7

Disabled

Enabled

-30.00%

-25.00%

-20.00%

-15.00%

-10.00%

-5.00%

0.00%

5.00%

2 3 4 5 6 7 8 9 10 11 12

B
D

-r
at

e

Density

DSO + HEVC FEI FastIntraMode

https://github.com/Intel-Media-SDK/MediaSDK/blob/master/doc/mediasdkhevcfei-man.pdf
https://github.com/Intel-Media-SDK/MediaSDK/blob/master/doc/mediasdkhevcfei-man.pdf

28 HEVC FEI overview

3.7 MOTION ESTIMATION CONTROLS
In this chapter, we discuss several controls related to the motion estimation process.

3.7.1 Search Window Size

The FEI encoder does motion estimation in a rectangular area of a reference frame. The size of this area

is specified via its horizontal and vertical dimensions by the RefWidth and RefHeight parameters.

During motion estimation, the FEI encoder compares a source block of pixels to a target block of exactly

the same size. This target block is located completely inside the search window. Because of this, the

total number of possible search locations is lower than the total number of pixels inside the search

window (RefWidth * RefHeight) and depends on the source block size as shown in Figure 20. The

area covered by these locations will be denoted as a “reference region” of the search window.

Figure 20. Search window for RefWidth=48, RefHeight=40 and 16x16 source block. The target block has the same size as the
source block. One of the target block locations is highlighted in green and all possible locations for the top-left corner of the
target blocks are highlighted in blue (“reference region”).

Supported values of both the RefWidth and RefHeight parameters are 20, 24, …, 60, 64 for uni-

directional motion estimation and 20, 24, …, 28, 32 for bi-directional motion estimation. Also, the

RefWidth * RefHeight must be less than or equal to 2,048 for uni-directional motion estimation and

less than or equal to 1,024 for bi-directional motion estimation.

HEVC FEI overview 29

Figure 21. Impact of search window size on VQ and density for PreENC + ENCODE pipeline

Window Size Density BD Rate

20x20 2.78 -0.92 %
24x24 2.77 -0.34 %
28x28 2.76 -0.15 %
32x32 2.74 -0.08 %

Table 13. Impact of search window size on VQ and density for PreENC + ENCODE pipeline

(For an API description look for mfxExtFeiHevcEncFrameCtrl::RefWidth and RefHeight in

Reference Manual for HEVC FEI.)

https://github.com/Intel-Media-SDK/MediaSDK/blob/master/doc/mediasdkhevcfei-man.pdf

30 HEVC FEI overview

3.7.2 Search Path

For better utilization of hardware, motion estimation is performed on several search locations at once

through so-called search units (SUs) (Figure 22). The size of each SU depends on the size of the source

block of pixels that has to be estimated. 4x4 search locations are used for 16x16 source blocks, 8x8 for

8x8 source blocks, and 8x4 for 16x8 and 8x16 source blocks.

Figure 22. Search units for RefWidth=48, RefHeight=40 and 16x16 source block. Search units have a size of 4x4 search locations
each. Each SU is assigned an index. Only locations inside the numbered SUs will be used during motion estimation as top left
corners of the target block.

During motion estimation, the encoder goes through search units one by one, following predefined

search path. Two are supported for now (“diamond” and “full”). See Figure 23. The application can also

specify the number of SUs in the path and the length of the search path. For bi-directional prediction,

the search path length specifies the sum of the searched SUs in both search windows. Supported values

for search path length are 1, 2, …, 62, and 63 for uni-directional search and 2, 3, … , 63 for bi-directional

search.

Figure 23. “Diamond” and “Full” search paths. Each square represents single SU. Indices represents order of evaluation during
motion estimation. Note, that actual SUs shape depends on source block dimension and may be rectangular, not square.

HEVC FEI overview 31

Both “diamond” and “full” search paths start from the center of the reference region and cover most of

the SUs. The major difference is the order of evaluation. It becomes important for fast search algorithms

that have short search paths. In this case, the diamond path covers a wider area but skips some SUs in

comparison to the full path. See Figure 24 and Figure 25.

Figure 24. Diamond search path for different search window sizes and different search path lengths. SUs that fall outside the
reference region (blue area) are not shown.

Figure 25. Full search path for different search window sizes and different search path lengths. SUs that fall outside the
reference region (blue area) are not shown.

32 HEVC FEI overview

Usually, this control has a negligible impact on VQ and performance (Table 14 and Table 15). The only

exception is very short search paths, where VQ slightly drops. Note that on some content, VQ drops on

short search paths may be significantly higher than average, as shown in Table 14.

Search Path Length Density BD Rate, Average BD Rate, Worst Case

2 2.77 -0.72% -2.85%

8 2.77 -0.16% -0.41%

16 2.76 -0.12% -0.03%

24 2.74 -0.11% -0.04%

32 2.74 -0.12% -0.04%

40 2.74 -0.12% -0.04%

48 2.74 -0.12% -0.04%

57 2.73 -0.12% -0.04%
Table 14. Impact of search path length on VQ and density for PreENC + ENCODE pipeline for 32x32 search window

Search Path Shape Density BD Rate

Full 2.74 -0.12%

Diamond 2.74 -0.12%
Table 15. Impact of search path shape on VQ and density for PreENC + ENCODE pipeline for 32x32 search window

(For an API description look for mfxExtFeiHevcEncFrameCtrl::SearchPath and LenSP in

Reference Manual for HEVC FEI.)

https://github.com/Intel-Media-SDK/MediaSDK/blob/master/doc/mediasdkhevcfei-man.pdf

HEVC FEI overview 33

3.7.3 Adaptive Search

Adaptive search is a variation of the standard gradient descent search. If it is disabled, then the encoder

evaluates all SUs from the search path specified by the application and chooses the best location. If it is

enabled, then after searching all SUs from the search path specified by the application, the encoder

checks the best-found location. If it falls on the SU boundary, then the encoder continues to search by

evaluating neighboring SUs of the best location found so far. The encoder continues this search until the

best location falls inside the SU or all neighboring locations have been searched or the search window

boundary is reached. (See Figure 26.)

Figure 26. Adaptive search for search path length equal to 20. At step 1 20 SUs have been searched and the best pixel location
(red square) has been found at the top-left corner of SU #3. Then SU #17 has been considered as the next to be searched, but
rejected because it has been searched already. SU #16 has been eliminated by the same reason. So the search continues to the
only remaining option SU #A0. After processing SU #A0, the best ME location once again falls onto its boundary and another
adaptive search step has been taken. Finally, after searching SU #A1 the best ME location does not fall onto its boundary and
the adaptive search ends.

Note that the total number of SUs searched during any type of search, including bi-directional, cannot

exceed 63. For example, if the search path length has been set to 61 and adaptive search has been

enabled, then at most two additional SUs will be searched as part of the adaptive search after searching

the first 61 SUs.

Usually, this control has negligible impact on VQ and performance. (See Table 16.)

Target Usage Adaptive Search Density BD Rate

4
Disabled 2.74 -0.30%

Enabled 2.74 -0.27%

7
Disabled 10.63 -24.39%

Enabled 10.62 -24.36%
Table 16. Impact of adaptive search control on VQ and density for PreENC + ENCODE pipeline

For the API description, look for mfxExtFeiHevcEncFrameCtrl::AdaptiveSearch in “Reference

Manual for HEVC FEI.”

https://github.com/Intel-Media-SDK/MediaSDK/blob/master/doc/mediasdkhevcfei-man.pdf
https://github.com/Intel-Media-SDK/MediaSDK/blob/master/doc/mediasdkhevcfei-man.pdf

34 HEVC FEI overview

3.7.4 Search Presets

The application can directly specify motion estimation parameters as described in previous chapters, or

use one of the six presets showed in Table 17. The impact of these presets on VQ and performance is

shown in Figure 27.

Preset Number Name Search Window
Size

Search Path
Shape

Search Path
Length

1 Tiny 24x24 Diamond 4
2 Small 28x28 Diamond 9
3 Diamond 48x40 Diamond 16
4 Large diamond 48x40 Diamond 32
5 Exhaustive 48x40 Full 48

Table 17. Presets for motion estimation.

Figure 27. Impact of search presets on VQ and density for PreENC+ENCODE pipeline

For an API description, look for mfxExtFeiHevcEncFrameCtrl::SearchWindow in “Reference

Manual for HEVC FEI.”

https://github.com/Intel-Media-SDK/MediaSDK/blob/master/doc/mediasdkhevcfei-man.pdf
https://github.com/Intel-Media-SDK/MediaSDK/blob/master/doc/mediasdkhevcfei-man.pdf

HEVC FEI overview 35

3.8 PERFORMANCE/VQ TRADEOFF
A conventional SDK encoder has a Target Usage control for tradeoff between performance and quality.

It has three settings:

 TU1: Quality

 TU4: Balance

 TU7: Speed

For some applications, this coarse control is not sufficient. A fine tradeoff between performance and

visual quality may be desirable (e.g., to stay close to the balanced mode VQ but fit in one more channel).

Yet another application may require runtime control over performance, at the same time keeping

highest possible VQ (e.g., to adopt to changes in content or overall system workload). Both these goals

can be achieved using FEI encoder controls. The application can gradually change performance and VQ

and, in contrast to conventional encoder, do it in real time, on a frame-by-frame basis.

Table 18 shows a list of major VQ and performance controls supported by the FEI encoder, and their

mapping to different target usages of a conventional encoder. This is not a complete list (some other

settings also differ), but their impact is insignificant. All combinations of controls are supported. The four

most interesting one are shown in Figure 28 for the PreENC+ENCODE pipeline and in Figure 29 for the

DSO+ENCODE pipeline. For example, for the DSO pipeline, enabling force CTU split control on P frames,

fast intra mode control on B frames, and increasing the number of frame partitions to 8 on the I and B

frames doubles density in comparison to the conventional encoder at the cost of just 3% to the BD rate.

 Quality
TU1

Balanced
TU4

Speed
TU7

Number of ref frames L0 3 3 1
Number of ref frames L1 1 1 1
Number of Frame Partitions 1 4 4
Force CTU split off off on
Fast intra mode off off on

Table 18. HEVC FEI presets to match different TU settings of conventional encoder

36 HEVC FEI overview

Figure 28. VQ/performance tradeoff for PreENC+ENCODE pipeline. FCS P means that Force CTU Split control is on on P frames,
FIM B means that Fast Intra Mode is on on B frames, NFP8-4-8 means that Number of Frame Partitions is 8 for I frames, 4 for P
frames, and 8 for B frames

FCS P + FIM B

FCS P +FIM B + NFP8-4-8

FCS PB + FIM B

FCS + FIM PB

-30.00%

-25.00%

-20.00%

-15.00%

-10.00%

-5.00%

0.00%

5.00%

2 3 4 5 6 7 8 9 10 11 12
B

D
-r

at
e

Density

HEVC FEI overview 37

Figure 29. VQ/performance tradeoff for DSO+ENCODE pipeline. FCS P means that Force CTU Split control is on on P frames, FIM
B means that Fast Intra Mode is on on B frames, NFP8-4-8 means that Number of Frame Partitions is 8 for I frames, 4 for P
frames and 8 for B frames.

38 HEVC FEI overview

4 PERFORMANCE BOTTLENECKS

HEVC FEI provides a rich set of controls to improve VQ and performance. However, efficiently using
them requires a basic understanding of possible performance bottlenecks. For example, it is useless to
enable Fast Intra Mode if EUs are underutilized. The only thing it will achieve is to decrease VQ without
any performance benefits.

To illustrate how GPU utilization depends on workload type, we selected three typical use cases for the
PreENC+ENCODE pipeline (Table 19) and profiled them using Intel® VTune Amplifier 2018 and its GPU
Hotspots analysis. For each use case, we selected a different number of channels to ensure real time
performance (i.e., to ensure that transcoding frame rate for each stream is above 30fps). To eliminate
start-time impact on the results, Intel VTune Amplifier traces were gathered from the fifth to tenth
seconds of transcoding. As input, the 40Mbps “elephants_dream” stream was used for both AVC and
HEVC cases. It was transcoded in constant QP mode to about 4Mbps.

Metric AVC to HEVC TU4 AVC to HEVC TU7 HEVC to HEVC TU7

Channel count (density) 3 11 4
Total GPU utilization, % 100% 100% 100%
EU utilization, % 100% 100% 55%
VDBOX1 utilization, % (encode/decode) 15%/0% 76%/0% 38%/62%
VDBOX2 utilization, % (encode/decode) 0%/17% 0%/69% not used

Table 19. GPU utilization metrics for PreENC+ENCODE pipeline

HEVC FEI overview 39

4.1 AVC TO TU4 HEVC TRANSCODING
As we can see from Table 19 and Figure 30 , when the encoder works in TU4 (balanced) mode, it spends

most of the time on motion estimation and mode decision. EU utilization is 100%. But the bitstream

packer is underutilized and VDBOX1 is almost idle at 15%. An additional load on EUs, like an increase in

the number of External MV Predictors, degrades performance. Performance controls like Force CTU Split

reduce EU usage and give performance gains.

HEVC-to-HEVC transcoding for the TU4 use case has a similar GPU utilization pattern. The only
difference is that the VDBOX2 decoding workload moves to VDBOX1. EU remains a bottleneck.

Such utilization patterns may change only with very high decoding and/or encoding bitrates, where
VDBOX may become a bottleneck. We won’t estimate how high these bitrates are, because this heavily
depends on stream content.

Figure 30. AVC to HEVC TU4. EU and VDBOXes task queues for a 100ms interval. Yellow denotes EU tasks, orange – VDBOX2,
blue – VDBOX1.

40 HEVC FEI overview

4.2 AVC TO TU7 HEVC TRANSCODING

Table 19 and Figure 31 show how the encoder works in speed mode and uses fast versions of algorithms
for motion estimation and mode decisions. Overall, processing here is significantly faster (11 channels in
comparison to 3 in the previous case). But EUs are still a bottleneck and they are 100% busy. PAK
utilization has significantly grown in comparison to the previous use case, but is still low. Also note that
both VDBOXEs are utilized, one for decoding and one for encoding.

HEVC FEI controls behave similarly in this case, but the room for performance improvement is much
smaller here. Most of the controls are already in fast mode (Table 18).

Figure 31. AVC to HEVC TU7. EU and VDBOXes task queues for a 100ms interval. Yellow denotes EU tasks, orange – VDBOX2,
blue – VDBOX1.

HEVC FEI overview 41

4.3 HEVC TO TU7 HEVC TRANSCODING

In the next case (Table 19 and Figure 32), the picture changes. The encoder still works in the same speed
mode, but the EUs are underutilized (just 55% busy). The reason for this change is redistribution of work
between VDBOXes. In the previous case, one of them did decoding, another did encoding, and overall
system performance was 11 channels. Here, all processing is done by one VDBOX and it becomes a
bottleneck, decreasing performance to just 4 channels, close to TU4. VDBOX spends only 38% of the
time on encoding and the rest on decoding. The second VDBOX is completely idle in this transcoding use
case due to the hardware limitation of the 6th Generation Intel® Core™ Processors. Only one VDBOX
supports HEVC processing, in contrast to AVC encoding/decoding, which is supported on both VDBOX1
and VDBOX2.

Because VDBOX is a bottleneck here, and its workload depends mostly on input/output bitrates and
stream content, there is not much that can be done to improve performance. We assume that the
bitrates and stream cannot be changed. On the other hand, EUs are underutilized, and it is possible to
improve VQ by using more MVPs, reducing the number of frame partitions, and so on.

Figure 32. HEVC to HEVC TU7. EU and VDBOXes task queues for a 100ms interval. Yellow denotes EU tasks, blue represents
VDBOX1.

42 HEVC FEI overview

5 SAMPLE APPLICATION

Usage of all FEI controls described in this paper is demonstrated by sample application that can be found

on GitHub here. The application supports transcoding of one source stream to several output streams.

This is called one-to-N transcoding. No resolution change is supported in this release, so it is a pure

adaptive bitrate use case.

The sample supports input streams encoded by different codecs, but in this paper we discuss only one

combination: two input streams encoded from the same YUV data with different settings. The streams

are:

 The main stream, an AVC stream encoded with a high bitrate. It is used only as a source of raw

data passed to the HEVC FEI encoder. In other words, this stream can be replaced by YUV file.

 The auxiliary stream, an HEVC stream from some high-quality encoder. The purpose of this
stream is to emulate IP algorithms, which would tune HEVC FEI encoder settings to reach better
quality. Besides, the information from the auxiliary stream is used in the BRC implementation
provide by the sample.

Figure 33 shows the sample pipeline. The first stage produces decoded raw frames from the main input

stream that goes through a regular AVC hardware decoder. We chose the AVC format for the main

stream to reach higher density on the test system that has only one VDBOX that supports HEVC

encoding/decoding (see the “Performance Bottlenecks” chapter for details). At the same stage, the

auxiliary stream is processed by a bitstream parser and, based on extracted data, the repack stage

produces MV predictors and other control parameters for the FEI encoder (see the “Decode Stream

Out” and “MV Repacking” chapters for details). After the first stage, task objects (HevcTaskDSO) are

produced that contain:

 Decoded frame

 DSO statistics

 Filled HEVC FEI control structures

Next, the task objects are passed to the Look Ahead (LA) part (a detailed description of LA is given in

“Look Ahead BRC“ chapter). Note that LA may cache a big number of tasks. Since, in the current

implementation, DSO statistics are bound to decoded surfaces, it leads to a high video memory

consumption.

Once the LA cache is full, LA returns a task object, which is passed to the encoder(s). Each encoder is

asynchronously operating in a separate thread. Encoders have queues of input tasks. In the absence of a

new task, the encoder is waiting on a conditional variable representing a non-zero tasks queue. When

the task comes, the encoder wakes up, encodes a surface, and produces a compressed bitstream.

https://github.com/Intel-Media-SDK/MediaSDK/tree/master/samples/sample_hevc_fei_abr

HEVC FEI overview 43

Figure 33. Sample configuration used for VQ evaluation

5.1 DECODE STREAM OUT
Decode Stream Out (DSO) is a stage of information extraction from the input HEVC bitstream. It is done

by input stream syntax parsing. Unfortunately, there is no support for HEVC decode stream-out in the

GPU. In the sample, it is done on the CPU. The implementation goal was to show VQ improvements, so

the code was not specifically optimized for performance. As a result, for speed target usage (TU7), this

CPU-level parsing became a bottleneck and limited overall density.

The information extracted by the DSO stage includes Motion Vectors (MVs), Reference Lists (RefLists)

and some additional statistics for LA BRC (see the “Look Ahead BRC” chapter for details).

The workflow diagram is represented in Figure 34. DSO accepts the encoded bitstream and extracts data

related to next frame with the help of the bitstream parser. That includes all data associated with the

frame NAL Units. Slice data contains several linked lists of HEVC basic syntax structures: CTU, CU, TU,

and PU, where each CTU is a root for the CU list and each CU is a root for the TU and PU lists. Reference

lists from the slice header are used to guarantee alignment of the reference structures between input

and output streams. MVs from the PU become MV predictors after a repacking procedure. Some

additional information from the CU level can be used as well. For example, the prediction type of the CU

can give a hint to the encoder about which mode to use for the parent CTU. The DSO also plays an

important role as a source of information for the BRC. QP and frame size are very important to know for

proper bitrate control. The implementation of LA BRC in sample_hevc_fei_abr uses some more

complex statistics as well, such as an approximation of Visual Distortion and the amount of predicted

pixels from the reference frame for an accurate estimation of frame importance.

We extracted and used this data to improve the quality of the HEVC FEI encoder:

 Motion vectors. The FEI encoder doesn’t use HME. It could miss long MVs or choose non-

optimal ones. In the DSO stage, MVs extracted from the input stream are converted to MV

predictors.

 Force intra/inter flags. These controls, if passed, influence the mode decision stage. During the

DSO stage, force flags are set depending on the input PU type.

44 HEVC FEI overview

 Reference lists. These are used to align the input stream reference structure with the FEI

encoder. It is not a mandatory step for general-purpose encoding, but very important for

transcoding scenarios. If the reference lists in the input and output streams diverge, it will result

in an incorrect MV predictor application because of mismatched reference indexes.

 POC. This is required for correct handling of the input surface by the MSDK lib.

 QP, encoded frame size, frame type, etc. This is data used by the BRC algorithm.

 Luma transform coefficients. The LA BRC algorithm uses them to approximate visual distortion.

Figure 34. DSO part of pipeline workflow

5.2 LOOK AHEAD BRC
The Look Ahead (LA) BitRate Control (BRC) algorithm assigns different QPs to each encoding frame using

information from future input frames. The LA algorithm better distribute bits between frames and

achieves better visual quality by adapting to stream content. It also better deals with scene changes.

The Look Ahead algorithm operates with frames in the LA window, including the current frame (which is

not encoded yet) and some future frames. BRC tries to fit the target bitrate within the LA window with

maximal visual quality. The Algorithm uses information from the input stream such as frame type and

encoded size, as well as initial QPs, to estimate the importance of each frame and assign more bits (and

lower QP) to more important frames.

The BRC in sample_hevc_fei_abr can be treated as a two-pass BRC because it operates with frames

already passed through some other BRC during the encoding of the input stream.

The LA BRC in the sample has four important parameters, which can be set through the command line

(see details on how each parameter affects encoding in the “BRC controls” chapter).

 LookAheadDepth <n_frames>. This shows how many frames from future to look ahead.

 LookBackDepth <n_frames>. This shows how many frames from the past to look back for

calculation of statistics.

HEVC FEI overview 45

 AdaptationLength <n_frames>. This shows how many frames from the past to use to

adjust the QP.

 Algorithm::<MSE <YUV file> | NNZ | SSC>. This shows which algorithm to use to

approximate visual distortion:

o MSE uses real mean squared error, calculated with YUV file (mostly for testing purposes in

real use cases YUV is not available).

o NNZ approximates distortion with the number of non-zero luma transform coefficients

(default).

o SSC approximates distortion with the sum of squared luma transform coefficients.

BRC has the following workflow:

 Input frames are buffered in a queue, with corresponding statistics gathered at the DSO stage.

 After the queue reaches LookAheadDepth size, frames start to go through the rest of the

pipeline, pass through BRC block, and then go to the FEI encoder.

Figure 35. LA BRC workflow.

5.2.1 Algorithm

The main idea of the algorithm is to adjust the QP of the current frame using statistics from future

frames and from some already encoded frames. Knowledge of some characteristics of future frames

allows us to predict content changes and redistribute bits between frames more accurately to achieve

better quality. The cache of already encoded frames is used to make our encoded size prediction for the

current frame more robust.

46 HEVC FEI overview

The LA BRC algorithm can be subdivided into five main steps (a detailed explanation of the algorithm can

be found in the ”Appendix B. Look Ahead BRC Algorithm”).

1. Extract new frame from the LA queue.

HEVC FEI overview 47

2. Calculate the complexities of future frames in the LA queue and the current frame.

This step estimates the complexity of all non-encoded frames (current and all future). The

algorithm uses some frame features such as QP, frame size, visual distortion, and pixel

propagation. The aim is to obtain an integral value which shows how important this frame is for

the sequence of frames within the LA window. It takes into account many indicators including

how many pixels of the current frame would be used in future frames, visual quality, and the QP

assigned by the previous BRC (during encoding of the input stream).

48 HEVC FEI overview

3. Go to the iterative search procedure that assigns QSteps for the current frame and frames

from the LA queue until reaching target bitrate.

Here, complexities are converted to QSteps (which are directly mapped to QPs). QStep

assignment is performed by an iterative search procedure. At each search step, the algorithm

assigns QSteps for all non-encoded frames and then estimates the bitrate. (For bitrate

estimation, the encoded frames from frame cache are taken into account to stabilize the bitrate

estimator and achieve robust estimation.) QStep correction is performed by scaling. If the

calculated bitrate is far from the target, search chooses different scale. If the bitrate exceeds the

target, the scale is decreased; otherwise, it is increased. Then the entire process is repeated

until convergence is reached.

HEVC FEI overview 49

4. After the QPstep is obtained, convert it to QP with additional corrections depending on the

frame type, with the purpose of adding extra bits to non-B-frames and compensating for

prediction errors.

This step performs QP correction if the current frame is a B-frame. The correction depends on

reference frame types. This correction also compensates for prediction errors using information

about previously predicted and encoded frame sizes.

50 HEVC FEI overview

5. Send feedback after encoding to update encoded frame statistics with the size of the encoded

frame.

HEVC FEI overview 51

5.2.2 BRC controls

LA BRC exposes several parameters that influence the algorithm adaptation to content. Here, we give a

brief explanation on how they affects actual quality adjustment.

 LookBackDepth. This parameter controls the left border of the look-ahead window. This

affects statistics calculation and bitrate estimation. Increasing this parameter helps to improve

bitrate estimation in future frames (mostly by stabilizing the estimation, making it less sensitive

to prediction errors). However, it slows down the adaptation to content changes. In other

words, too many frames from the past may result in a bad adaptation (Figure 36). On content

where frame statistics change dramatically, a small window adapts much faster (Figure 37). On

the other hand, in situations where stream statistics change but overall content complexity

remains the same, a large window stabilizes the bitrate estimation and produces better quality

(Figure 38).

Figure 36. Adaptation on stream content change (panaramic shooting on BQ terrace stream). Blue – 300 frames of LookBack,
orange – 100 frames, green – 0 frames.

Figure 37. Adaptation to scene change: complex content to almost still image (crowd run to honey bee). Blue – 300 frames of
LookBack, orange – 100 frames, green – 0 frames.

52 HEVC FEI overview

Figure 38. Adaptation to camera move on honey bee. Blue – 300 frames of LookBack, orange – 100 frames, green – 0 frames.

 LookAheadDepth. This is the number of frames from the future to look ahead, the same as LA

queue length.

A bigger parameter means more benefits gained after scene change (because the algorithm will

start preparation to the upcoming scene change earlier). For example, Figure 39 shows where

complex motion changes to static content (“crowd run” changes to “honey bee”). A large LA

window allows the algorithm to notice such changes and to increase the bitrate. On the other

side, if the complexity of a new scene is overestimated, the algorithm will decrease the bitrate

earlier, with bigger LookAheadDepth, and will lose overall quality on this segment. For instance,

Figure 40 shows panoramic motion changes to complex motion (“BQ terrace” changes to

“crowd run”). The algorithm overestimated the complexity of the “crowd run” sequence and

lost quality on the interval between frames 300 and 500.

Figure 39. Benefit from noticing scene change earlier. Blue - LookAheadDepth = 300, orange - LookAheadDepth = 100

HEVC FEI overview 53

Figure 40. Panoramic motion will change to complex motion soon. Larger LA window lost quality. Blue - LookAheadDepth = 300,
orange - LookAheadDepth = 100.

 AdaptationLength. This parameter controls number of frames from the past which are used

to compute the bitrate adjustment ratio (see step 4 in the “Algorithm” chapter). A bigger

amount stabilizes the adjustment estimation, but it makes it less sensitive to content changes. In

general, this parameter targets bitrate accuracy. Figure 41 shows behavior in the case of

changing a simple motion to a complex motion. The lowest adaptation window allows it to

adapt faster. In Figure 42, the situation is the opposite. The larger window brings robustness to

the estimation, when the small window fails to deal with a scene change where an almost-still

image changes to simple motion.

Figure 41. Behavior of algorithm with different AdaptationLength (simple panoramic shooting on “bqterrace” changes to
complex motion of cars at the end of stream). Blue - 300 frames, green - 30 frames.

54 HEVC FEI overview

Figure 42. Behavior of algorithm with different AdaptationLength (almost still image of “honey bee” changes to simple motion
on “sunflower” on frame 1347). Blue - 300 frames, green - 30 frames.

In conclusion, the optimal setting for the LA BRC parameters should be a tradeoff between prediction

error and the speed of adaptation to content changes.

 Algorithm. This is the algorithm of visual distortion estimation. It is used to approximate the

subjective quality of an encoded frame relative to the source frame. This value is one of the

parameters of the frame complexity estimation formula (see Appendix B. Look Ahead BRC

Algorithm,” for details). Supported algorithms are:

o MSE (Mean Squared Error), calculated as a per-pixel sum of the squared differences

between the source and encoded frames divided by the number of pixels. This one

requires an original YUV file, which is not available in most cases. It is implemented

mostly for testing purposes, and not optimized for performance (it reads huge amount

of data from disk, allocates a temporary buffer, and uses non-optimized straightforward

way to calculate sum of squared differences). This has the best quality and worst

performance among all methods (see the “Visual Quality” chapter for details).

o NNZ (Number of Non-Zero transform coefficients), calculated as a total number of the

non-zero luma transform coefficients in a whole frame. Based on the results from the

“Visual Quality” chapter, it gives good quality in terms of BD-rate gain and almost the

same performance as hardware BRC. Because of that, the NNZ algorithm is used by

default.

o SSC (Sum of Squared luma transform Coefficients). This is another way to map

coefficients to distortion, which involve the magnitude of the coefficients. This method

shows worse quality results than NNZ, with comparable performance.

HEVC FEI overview 55

5.2.3 Scene Change Handling

The Look Ahead BRC algorithm is much better for dealing with scene changes than regular BRC. Scene

changes may be very harmful for BRC without LA if the motion type changes (i.e., fast motion content

changes to slow motion and vice versa). In such a situation, past statistics won’t help us guess optimal

encoding parameters, so BRC will spend some time to adapt for the new type of content and will

produce content of bad quality during this time, trying to stay within the allowed bitrate. Figure 43

demonstrates the different behavior of two BRCs during a scene change. We will use hardware BRC as a

reference in quality and performance measurements. This standard built-in driver bitrate control

algorithm is used by the conventional hardware encoder. This plot demonstrates the PSNR Y of HW BRC

and LA BRC on a concatenated stream with several scene changes, where the type of motion radically

changes. It is seen that the LA BRC experiences much less distortion on scene changes. For example, on

frame 1058 PSNR Y, the difference between the two algorithms is above 9db. This results in a huge

visual quality difference (Figure 44 and Figure 45).

Figure 43. Scene change “crowd run” -> “honey bee” (frame 1056) -> “sunflower” (frame 1347). Blue line - HW BRC without LA,
orange - LA BRC from sample_hevc_fei_abr

56 HEVC FEI overview

Figure 44. HW BRC PSNR-Y 29.18 (frame 1058 after “crowd run” to “honey bee” scene change)

Figure 45. LA BRC PSNR-Y 38.5563 (frame 1058 after “crowd run” to “honey bee” scene change)

HEVC FEI overview 57

5.2.4 Visual Quality

Four streams were used to evaluate the impact of the BRC algorithm on visual quality. Each one was

concatenated from four streams from the test pool described in Appendix E. Stream information.” We

selected streams with different complexities to make scene changes harder to handle by BRC and to

emphasize LA benefits. We ran the DSO+ENCODE pipeline and compared the default BRC used by the

hardware-accelerated encoder with LA BRC, as described above.

VQ results are shown in Table 20. On these streams, LA BRC shows better objective visual quality than

HW BRC. The MSE algorithm is the best, but both NNZ and SSC have similar VQ gain on two streams,

moderate gain on one, and are similar to HW BRC VQ on the other stream.

Performance results are presented in Table 21. LA BRC with the NNZ and SSC algorithms demonstrates

performance on par with HW BRC. MSE is significantly slower.

Table 20. BD-rate comparison. LA settings: LookAhead=100, LookBack=100, AdaptationLength=100. Positive numbers mean that
LA BRC is better.

BRC Algorithm Density

HW BRC 3.19

MSE 0.26

NNZ 3.02

SSC 3.02

Table 21. Average density in numbers of transcoding channels. LA settings: LookAhead=100, LookBack=100,
AdaptationLength=100. Bigger is better.

sequence MSE NNZ SSC

bq_terrace_crowd_run_HoneyBee_sunflower 3.43% 1.06% 0.55%

ducks_sunflower_park_joy_HoneyBee 4.88% 4.66% 3.53%

HoneyBee_sunflower_bq_terrace_crowd_run 2.45% 0.09% -0.86%

sunflower_ducks_HoneyBee_park_joy 5.65% 6.36% 5.36%

average 4.10% 3.04% 2.15%

58 HEVC FEI overview

6 APPENDIX A. SAMPLE APPLICATION DETAILS

6.1 DECODE STREAM-OUT
DSO implementation in the sample_hevc_fei_abr is performed by HevcSwDso class, which uses

the IYUVSource interface and fills in data for the Encoder and BRC. Also, it owns an instance of

BS_HEVC2_parser, which perform actual input stream parsing.

HEVC bitstream parser implementation is located in the BS_HEVC2_parser class. To initialize the

parser, input stream should be opened with BS_HEVC2_parser::open. To start actual parsing,

perform a call of the BS_HEVC2_parser::parse_next_unit function. Note that this call

invalidates all pointers to data of previous frame’s structures if they weren’t locked by

BS_HEVC2_parser::lock. After that step, obtain the pointer to the first NALU of the frame with a

BS_HEVC2_parser:: get_header call. Then you can access all syntax elements: SPS/PPS/Slice

Headers, CTU, CU, PU, and TU trees. Each syntax element tree is arranged in a linked list structure.

All the work is done inside mfxStatus HevcSwDso::GetFrame(HevcTaskDSO & task)and

the following functions are called one-by-one:

 void HevcSwDso::FillFrameTask(const BS_HEVC2::NALU* header,
HevcTaskDSO & task)

header – pointer to the current NAL Unit being parsed

task – DSO task which stores information required for proper encoding with the FEI encoder

Here, the current NAL Unit is parsed and extracted information required for

HevcTaskDSO task, such as: DPB state (HevcTaskDSO::m_dpb), RefLists

(HevcTaskDSO::m_refListActive[2]), frame type

(HevcTaskDSO::m_frameType). This data is required for actual encoding. RefLists

are used for proper construction of mfxExtHEVCRefLists – the extension buffer

which is used to align internal encoders RefList with the one from input stream.

 void HevcSwDso::FillMVP(const BS_HEVC2::NALU* header,

mfxExtFeiHevcEncMVPredictors & mvps, mfxU32 nMvPredictors[2])

header – pointer to current NAL Unit being parsed

mvps – motion vector predictors buffer to fill

nMvPredictors[2] – to report back number of MVPs for L0/L1 lists

In this function, the mfxExtFeiHevcEncMVPredictors buffer is filled according

to its data layout with the motion vectors of input frame. Those vectors will be used as

predictors during motion estimation stage of FEI encoder.

 void HevcSwDso::FillCtuControls(const BS_HEVC2::NALU* header,

mfxExtFeiHevcEncCtuCtrl & ctuCtrls)

header – pointer to current NAL Unit being parsed

ctuCtrl – extension buffer for CTU level controls

HEVC FEI overview 59

In this function, some additional tuning is performed on the CTU level by filling the

mfxExtFeiHevcEncCtuCtrl buffer. Currently, the CTU is forced to Inter/Intra

according to the mode decision in the auxiliary input stream.

 void HevcSwDso::FillBRCParams(const BS_HEVC2::NALU* header,

HevcTaskDSO & task)

header – pointer to current NAL Unit being parsed

task – DSO task which stores information required for proper encoding with FEI encoder and

also data for BRC

This function fills HevcTaskDSO::m_statData parameters for LA BRC (LA BRC

presence is indicated by the m_bCalcBRCStat variable). LA BRC uses various statistics,

including original frame size, share of intra pixels, and shares of pixels predicted from

each reference. If the user selected an algorithm which uses distortion approximation,

the additionally calculated number of non-zero luma transform coefficient or sum of

squared coefficients.

60 HEVC FEI overview

6.2 MV REPACKING
Repacking is the process of converting per PU motion vectors obtained from DSO to the

mfxExtFeiHevcEncMVPredictors structure required for FEI encoder. It has two modes of operation.

Both modes attempt to produce the MVP field in mfxExtFeiHevcEncMVPredictors that is as close

as possible to the motion vector field in the corresponding input frame from auxiliary bitstream.

6.2.1 First mode

This is the default mode. It is specified via a –DSOMVPBlockSize 7 command line option of the

sample_hevc_fei_abr application. It sets the mfxExtFeiHevcEncMVPredictor::BlockSize

field of each mfxExtFeiHevcEncMVPredictors::Data element according to the size of the

corresponding CU in the frame from the auxiliary bitstream (Figure 46). For the sake of simplicity, only

the L0 motion vectors will be considered, since the process is the same for L1 motion vectors.

For 32x32 CUs, each input CU corresponds to four mfxExtFeiHevcEncMVPredictor elements. The

BlockSize field of the mfxExtFeiHevcEncMVPredictor element corresponding to the top-left

16x16 block of the 32x32 CU is set to 2, while the other three BlockSize fields are set to 0. This

enables the 32x32 predictor mode (i.e., only MVPs from the first mfxExtFeiHevcEncMVPredictor

element will be used for the whole 32x32 area occupied by the CU). The motion vectors corresponding

to the PUs inside the 32x32 CU are copied into the mfxExtFeiHevcEncMVPredictor::MV[4] field of

the same mfxExtFeiHevcEncMVPredictor element. Since there may be no more than four PUs

inside a CU, all available bitstream motion vectors for this CU are copied and no loss of motion vector

data occurs during repacking.

For 16x16 CUs, each 16x16 CU corresponds to a single mfxExtFeiHevcEncMVPredictor element. For

this element, the BlockSize field is set to 1 (16x16 predictor mode) and up to four MVs from the PUs

inside the 16x16 CU are copied into the mfxExtFeiHevcEncMVPredictor::MV[4] field.

For 8x8 CUs, each 8x8 CU has three sibling 8x8 CUs that correspond to the same

mfxExtFeiHevcEncMVPredictor. For each of these four CUs, only the motion vector from the first

PU inside the CU is copied into the mfxExtFeiHevcEncMVPredictor::MV[4] field of the

corresponding mfxExtFeiHevcEncMVPredictor element.

Note that the process above applies only to inter CUs. For intra CUs, there are no motion vectors to

repack and the corresponding mfxExtFeiHevcEncMVPredictor structure is left empty.

HEVC FEI overview 61

Figure 46. Illustration of the process of repacking the motion vectors from the DSO auxiliary stream into the motion vector
predictor structure mfxExtFeiHevcEncMVPredictors. First mode, -DSOMVPBlockSize 7.

62 HEVC FEI overview

6.2.2 Second mode

The second mode of motion vector repacking is specified via the –DSOMVPBlockSize 1 command line

option of the sample_hevc_fei_abr application. It sets the BlockSize field of each

mfxExtFeiHevcEncMVPredictors::Data element to 1 (16x16 MVP mode) and attempts to fill all

the mfxExtFeiHevcEncMVPredictor elements corresponding to 16x16 blocks with valid motion

vector predictor data by replication MVPs if necessary (Figure 47).

For 32x32 CUs, the motion vector inside each PU is put into each mfxExtFeiHevcEncMVPredictor

element that has its corresponding 16x16 block intersected by this PU.

For 16x16 CUs, the repacking process is the same as for the first mode.

For 8x8 CUs, the motion vectors from all PUs of the four 8x8 CUs corresponding to a single

mfxExtFeiHevcEncMVPredictor element are gathered and four motion vectors corresponding to

the PUs with largest area are copied into the mfxExtFeiHevcEncMVPredictor::MV[4] field.

HEVC FEI overview 63

Figure 47. Illustration of the process of repacking the motion vectors from the DSO auxiliary stream into the motion vector
predictor structure mfxExtFeiHevcEncMVPredictors. Second mode, -DSOMVPBlockSize 1.

64 HEVC FEI overview

6.3 LA BRC
The Look Ahead BRC is implemented in the LA_BRC class, which provides an interface for the encoder

to submit a new frame and its statistics, and also to report the size of the encoded frame as feedback.

The Look Ahead Queue is implemented in the LA_Stat_Queue class. All the work with the queue is

hidden within LA_BRC. The LA queue stores some average statistics for frames in it, which is

automatically updated when some frame leaves the queue or some other frame comes in. This data is

used by the LA Algorithm for frame complexity estimation (step 3) and in the QP correction stage (step

4). Correspondence of the code location to the steps in section “Algorithm“ is:

1. LA_Stat_Queue::StartNewFrameProcessing

2. LA_Stat_Queue::CalcComplexities

3. LA_BRC::UpdateStatData

4. LA_BRC::PreEnc

5. LA_BRC::Report

HEVC FEI overview 65

7 APPENDIX B. LOOK AHEAD BRC ALGORITHM

7.1 ALGORITHM
In this section, we provide a precise explanation of each step from the “Algorithm” section.

The major steps of the algorithm are:

1. Extract new frame from LA queue.

2. Calculate the complexity of all frames in the LA queue, and for the current frame, using the

statistics of each frame with the following formula:

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦[𝑖] = 𝑄𝑃𝑠𝑡𝑒𝑝_𝑜𝑟𝑖𝑔[𝑖] ∙ 𝐹𝑟𝑎𝑚𝑒𝑆𝑖𝑧𝑒_𝑜𝑟𝑖𝑔[𝑖]√
𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

1 + 𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛[𝑖]
∙

𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒𝑑[𝑖]

𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
.

Where 𝑄𝑃𝑠𝑡𝑒𝑝_𝑜𝑟𝑖𝑔 and 𝐹𝑟𝑎𝑚𝑒𝑆𝑖𝑧𝑒_𝑜𝑟𝑖𝑔 are original QPstep and FrameSize from input

stream. 𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 is a current frame distortion and 𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ is an average distortion in the

LookAhead + LookBack window. 𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒𝑑 is the total propagation of the current frame’s

pixels, 𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ is the average propagation on the LookAhead + LookBack window.

3. Go to the iterative search procedure, which assigns QPs to each frame and checks if the total

bitrate of the LA queue is within the bitrate (sizes of already encoded frames from cache are

also used here for more robust bitrate estimation). The QPstep estimation is performed with the

following procedure.

𝑄𝑃𝑠𝑡𝑒𝑝[𝑖] =
𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦[𝑖]0.4

𝑠𝑐𝑎𝑙𝑒

This will set the QPsteps for P frames at correct level, but the I and B frames should be corrected

by the following procedure, which is applied to all frames in the LA queue (non-encoded

frames). At first, we will skip all the subsequent B-frames (frames are stored in encoded order,

so reference frames precede to non-reference―i.e., the sequence IPBBB in the LA queue

corresponds to the reference I and P-frames and 3 B-frames, which have I-frame as the L0

reference and P-frame as the L1 reference). And set their QPs as:

𝑄𝑠𝑡𝑒𝑝𝐵 = 𝑄𝑠𝑡𝑒𝑝𝐹𝑖𝑟𝑠𝑡𝑁𝑜𝑛𝐵 ∙ (
𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝐹𝑖𝑟𝑠𝑡𝑁𝑜𝑛𝐵

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝐵
)

0.35

.

 Then, for all P-frames, we will compute two values, which initialized with 0 first.

𝐿𝑜𝑔𝑄 = (𝐿𝑜𝑔𝑄 + log (𝑄𝑃𝑠𝑡𝑒𝑝[𝑖])) ∙ 𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛[𝑖]

𝑛𝑜𝑟𝑚 = (𝑛𝑜𝑟𝑚 + 1) ∙ 𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛[𝑖]

Both are used for I frames QPstep calculation.

𝑄𝑃𝑠𝑡𝑒𝑝𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒𝑑 =
𝑒

𝐿𝑜𝑔𝑄
𝑛𝑜𝑟𝑚

1.4

If 𝑛𝑜𝑟𝑚 ≥ 1then 𝑄𝑃𝑠𝑡𝑒𝑝𝐼 = 𝑄𝑃𝑠𝑡𝑒𝑝𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒𝑑 else we blend the QPstep in following way:

66 HEVC FEI overview

𝑄𝑃𝑠𝑡𝑒𝑝𝐼 = 𝑄𝑃𝑠𝑡𝑒𝑝𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒𝑑 ∙ 𝑛𝑜𝑟𝑚 + 𝑄𝑃𝑠𝑡𝑒𝑝𝐼𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 ∙ (1 − 𝑛𝑜𝑟𝑚).

Now we can estimate the bitrate for current 𝑠𝑐𝑎𝑙𝑒.

𝐵𝑖𝑡𝑠𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑[𝑖] =
𝑄𝑃𝑠𝑡𝑒𝑝𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙[𝑖]

𝑄𝑃𝑠𝑡𝑒𝑝𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑[𝑖]
∙ 𝐹𝑟𝑎𝑚𝑒𝑆𝑖𝑧𝑒[𝑖]

𝐵𝑖𝑡𝑟𝑎𝑡𝑒 =
1

𝑁𝐹𝑟𝑎𝑚𝑒𝑠
∙ (∑ 𝐵𝑖𝑡𝑠𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑[𝑖]

𝐹𝑢𝑡𝑢𝑟𝑒𝐹𝑟𝑎𝑚𝑒𝑠

+ ∑ 𝐵𝑖𝑡𝑠𝐸𝑛𝑐𝑜𝑑𝑒𝑑[𝑖]

𝐸𝑛𝑐𝑜𝑑𝑒𝑑𝐹𝑟𝑎𝑚𝑒𝑠

)

Where 𝑁𝐹𝑟𝑎𝑚𝑒𝑠 – is a number of frames in current window, which is NLookAheadFrames +

NLookBackFrames.

Search procedure checks the 𝐵𝑖𝑡𝑟𝑎𝑡𝑒 and if it doesn’t match requested one it reruns with

different 𝑠𝑐𝑎𝑙𝑒.

At first, scale and bitrate ratio bounds initialized. The target is to reach ratio which equals (or

very close) to 1.0.

Here Ls and Rs are the left and right bounds of scale, represented by the lowest and biggest

possible scale to apply. Lr and Rr are bounds of ratio corresponding to scale bounds. The target

ratio 1.0 is somewhere between Lr and Rr.

HEVC FEI overview 67

Then projection of target ratio to scale is performed.

CurrentScale now is a candidate to be the scale which gives bitrate close to target.

The next step is projection of CurrentRatio back to the ratio axis.

The scale to ratio projection (actually, bitrate calculation) procedure includes QPsteps

calculation for all frames in the LA window.

68 HEVC FEI overview

Check if CurrentRatio is near target within some predefined accuracy.

If it is not (like on picture above, here bitrate exceeds target), move the next iteration of the

search to one of the segments, which has target ratio inside.

Update one of the boundaries of scale and ratio. In the described situation, the next search will

be performed in the left branch.

Repeat the procedure until convergence. At that moment, the final QPsteps are known.

4. After QPstep is obtained, convert it to QP with additional correction depending on the frame

type, with the purpose of adding extra bits to non-B-frames. Multiply by the BitsEncoded /

BitsPredicted ratio to compensate for prediction errors.

HEVC FEI overview 69

If the current frame is a non-B-frame, the resulting QP is just a simple formula:

 𝑄𝑃[𝑖] = 𝑄𝑃𝑠𝑡𝑒𝑝2𝑄𝑃 (𝑄𝑃𝑆𝑡𝑒𝑝[𝑖] ∙
𝐵𝑖𝑡𝑠𝐸𝑛𝑐𝑜𝑑𝑒𝑑

𝐵𝑖𝑡𝑠𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
).

For B-frames, additional processing is performed (see explanation below).

Consider we have B-frame with 2 references (if there are more than 1 L0, only first one is taken

into account) as in the picture below.

Where POC – is a current B-frame POC, compl – is a current B-frame complexity, POC_L0 (L1),

compl_L0 (L1), QP_L0 (L1), type_L0 (L1) – are POC, complexity, QP and type of L0 (L1)

references.

Correction is performed in two steps, where the first step depends on the type of L0 and L1

references and dedicated to QP smoothing.

70 HEVC FEI overview

Case 1: both references are P-frames.

Calculate the complexity distance in following way:

𝐶𝑜𝑚𝑝𝑙𝐷𝑖𝑠𝑡𝐿0 = min (
𝑐𝑜𝑚𝑝𝑙 + 1.0

𝑐𝑜𝑚𝑝𝑙_𝐿0 + 1.0
,
𝑐𝑜𝑚𝑝𝑙_𝐿0 + 1.0

𝑐𝑜𝑚𝑝𝑙 + 1.0
).

This value indicates how close complexities are. For similar complexities, this value

increases and tends to limit at 1.0 for identical complexities.

The formula for 𝐶𝑜𝑚𝑝𝑙𝐷𝑖𝑠𝑡𝐿1 is similar.

POC distances are more straightforward:

𝑃𝑂𝐶𝑑𝑖𝑠𝑡𝐿0 = 𝑃𝑂𝐶 − 𝑃𝑂𝐶_𝐿0;

𝑃𝑂𝐶𝑑𝑖𝑠𝑡𝐿1 = 𝑃𝑂𝐶_𝐿1 − 𝑃𝑂𝐶;

After that, QP is calculated as a weighted blending of reference frames QPs by

following formula:

𝑞𝑝 =
𝑞𝑝_𝐿0 ∙ 𝐶𝑜𝑚𝑝𝑙𝐷𝑖𝑠𝑡𝐿0 ∙ 𝑃𝑂𝐶𝑑𝑖𝑠𝑡𝐿0 + 𝑞𝑝_𝐿1 ∙ 𝐶𝑜𝑚𝑝𝑙𝐷𝑖𝑠𝑡𝐿1 ∙ 𝑃𝑂𝐶𝑑𝑖𝑠𝑡𝐿1

𝐶𝑜𝑚𝑝𝑙𝐷𝑖𝑠𝑡𝐿0 ∙ 𝑃𝑂𝐶𝑑𝑖𝑠𝑡𝐿0 + 𝐶𝑜𝑚𝑝𝑙𝐷𝑖𝑠𝑡𝐿1 ∙ 𝑃𝑂𝐶𝑑𝑖𝑠𝑡𝐿1
.

The same approach is used to calculate updated complexity:

𝐶𝑜𝑚𝑝𝑙𝑈𝑝𝑑𝑎𝑡𝑒𝑑

=
𝑐𝑜𝑚𝑝𝑙_𝐿0 ∙ 𝐶𝑜𝑚𝑝𝑙𝐷𝑖𝑠𝑡𝐿0 ∙ 𝑃𝑂𝐶𝑑𝑖𝑠𝑡𝐿0 + 𝑐𝑜𝑚𝑝𝑙_𝐿1 ∙ 𝐶𝑜𝑚𝑝𝑙𝐷𝑖𝑠𝑡𝐿1 ∙ 𝑃𝑂𝐶𝑑𝑖𝑠𝑡𝐿1

𝐶𝑜𝑚𝑝𝑙𝐷𝑖𝑠𝑡𝐿0 ∙ 𝑃𝑂𝐶𝑑𝑖𝑠𝑡𝐿0 + 𝐶𝑜𝑚𝑝𝑙𝐷𝑖𝑠𝑡𝐿1 ∙ 𝑃𝑂𝐶𝑑𝑖𝑠𝑡𝐿1
.

Case 2: only one of the references is a P-frame

In such a situation, values from that reference are simply inherited. For example, if

the P-frame reference is the L0 reference, the following formula is used:

𝑞𝑝 = 𝑞𝑝_𝐿0;

𝐶𝑜𝑚𝑝𝑙𝑈𝑝𝑑𝑎𝑡𝑒𝑑 = 𝑐𝑜𝑚𝑝𝑙_𝐿0.

Case 3:

Blend the QPs of references and keep the complexity of the current frame:

𝑞𝑝 =
𝑞𝑝_𝐿0 + 𝑞𝑝_𝐿1

2
+ 6 ∙ 𝑙𝑜𝑔21.4;

𝐶𝑜𝑚𝑝𝑙𝑈𝑝𝑑𝑎𝑡𝑒𝑑 = 𝑐𝑜𝑚𝑝𝑙.

HEVC FEI overview 71

In the next step, additional adjustment is performed. QP is increased to save bits on B-frames

encoding. It is done by adding some delta to QP:

∆𝑞𝑝𝐵 = 𝑙𝑜𝑔2 (
𝐶𝑜𝑚𝑝𝑙𝑈𝑝𝑑𝑎𝑡𝑒𝑑

𝑐𝑜𝑚𝑝𝑙
∙

𝐵𝑖𝑡𝑠𝐸𝑛𝑐𝑜𝑑𝑒𝑑

𝐵𝑖𝑡𝑠𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
) ∙ 6 ∙ 0.35;

𝑞𝑝+= 𝐶𝑙𝑖𝑝3(0,6, ∆𝑞𝑝𝐵).

Where 𝐶𝑙𝑖𝑝3 truncates delta to 0 or 6 if it exceeds corresponding boundary.

5. After encoding, update the encoded frame statistics with the size of the encoded frame.

72 HEVC FEI overview

7.2 PIXEL PROPAGATION
This section provides more explanation of how pixel propagation is calculated.

Let’s consider four frames of 2x2 pixels resolution. Green blocks are intra pixels white are inter pixels.

Numbers over inter pixels indicate reference frame numbers.

First, for each frame, we find how many pixels we predicted from each reference frame. For Bi-

prediction, we take half of the pixels from each frame.

“0->3” means that we predict three pixels from frame number 0.

HEVC FEI overview 73

Then, for each frame, calculate the prediction share (share of total inter pixels predicted from each

reference), which is the number of predicted pixels from a particular frame divided by the total number

of inter pixels. It is a measure of prediction from each reference frame.

“3->0.5/2=0.25” means that 25% of the inter pixels in this frame are predicted from frame number 3.

On this step, we calculate how many pixels are directly propagated by each reference frame (i.e., for

frame 0, how many 0 indicators are in following frames). For Bi-prediction, we take half of the pixels

from each frame.

74 HEVC FEI overview

The tricky thing is taking into account indirect propagation, which is the number of pixels predicted from

the current frame transitively by referencing other frames which have direct references to the current

frame. In other words, if we consider three frames, each is a reference to only the previous one, IPP,

and suppose, at each frame, 50% of pixels are predicted from the previous frame. First, P uses 50% of I

pixels; second, P uses 50% of the first P pixels, but in the same moment it actually uses about 25% of the

pixels of the I frame. So I frame is more important, since its pixels propagate more. From this point of

view, any distortion in the I frame propagates more to the other frames.

HEVC FEI overview 75

The total propagation share is the sum of directly and indirectly propagated pixels divided by the total

number of pixels, plus one for regularization (this is made to make non-ref B-frames have a total value

equal to one, which makes it much simpler to use, because it is non-zero at any frame).

76 HEVC FEI overview

8 APPENDIX C. SYSTEM CONFIGURATION

OS

 CentOS Linux* release 7.4.1708

 Kernel: 3.10.0-693.17.1.el7.x86_64

 UMD: 16.9.00092

 KMD: i915 1.6.0 20170818-00092-13ac7794

CPU

 Intel® Core™ i7-6770HQ CPU processor @ 1.80GHz

 CPU(s): 4

 Thread(s) per core: 2

 Stepping: 3

 L1d cache: 128 KB

 L1i cache: 128 KB

 L2 cache: 1 MB

 L3 cache: 6 MB

 L4 cache: 128 MB

GPU

 Intel® Iris™ Graphics 580

 eDRAM: 128 MB

 EU Count: 72

 Max Core Frequency: 950 MHz

Memory

 Number of channels: 1

 Size: 16384 MB

 Type: DDR4

 Speed: 2133 MHz

Three GPU slices (default) were enabled. CPU, GPU, and uncore frequencies were fixed. Performance

mode and VDBox* load balancing were enabled. To do so, the following commands were executed:

echo 950 > /sys/class/drm/card0/gt_min_freq_mhz
echo 950 > /sys/class/drm/card0/gt_max_freq_mhz
echo 950 > /sys/class/drm/card0/gt_boost_freq_mhz

cpupower frequency-set -d 1800000 -u 1800000 -g performance

wrmsr 0x620 0x1212
wrmsr 0x621 0x12

echo -e "[KEY]\n\t0x00000001\n\tUFKEY_INTERNAL\\\n\t[VALUE]\n\t\t Enable VDBox
load balancing\n\t\t4\n\t\t1" > /etc/igfx_user_feature.txt

HEVC FEI overview 77

9 APPENDIX D. COMMAND LINES

This appendix provides command lines used during VQ and performance measurements. Sample

applications can be found on GitHub here. A detailed description of command line parameters can be

found in correspondent readme here.

9.1 CONVENTIONAL TRANSCODING

9.1.1 TU4
./sample_multi_transcode -i::h264 $AVC_INPUT -o::h265 $TU4_STREAM -cqp -qpi $QP
-qpp $QP -qpb $QP -DisableQPOffset -u 4 -gop_size 32 -dist 4 -num_ref 4 -bref
-l 1 -hw -async 1

9.1.2 TU7
./sample_multi_transcode -i::h264 $AVC_INPUT -o::h265 $TU7_STREAM -cqp -qpi $QP
-qpp $QP -qpb $QP -DisableQPOffset -u 7 -gop_size 32 -dist 4 -num_ref 4 -bref
-l 1 -hw -async 1

9.2 PREENC + ENCODE

9.2.1 TU4 encoding
./sample_hevc_fei -i $YUV_INPUT -w $WIDTH -h $HEIGHT -f $FPS -o $FEI_TU4_STREAM
-preenc 4 –encode -qp $QP -DisableQPOffset -g 32 -gpb:on -idr_interval 0 -
GopRefDist 4 -NumRefFrame 4 -NumRefActiveP 3 -NumRefActiveBL0 3 -NumRefActiveBL1
1 -bref -NumFramePartitions 4 -AdaptiveSearch -SearchWindow 5 -l 1 -EncodedOrder
-MVPBlockSize 1

9.2.2 TU4 transcoding
./sample_hevc_fei -i::h264 $AVC_INPUT -o $FEI_TU4_STREAM -preenc 4 –encode -qp
$QP -DisableQPOffset -g 32 -gpb:on -idr_interval 0 -GopRefDist 4 -NumRefFrame 4
-NumRefActiveP 3 -NumRefActiveBL0 3 -NumRefActiveBL1 1 -bref -NumFramePartitions
4 -AdaptiveSearch -SearchWindow 5 -l 1 -EncodedOrder -MVPBlockSize 1

9.2.3 TU7 encoding
./sample_hevc_fei -i $YUV_INPUT -w $WIDTH -h $HEIGHT -f $FPS -o $FEI_TU7_STREAM
-preenc 4 –encode -qp $QP DisableQPOffset -g 32 -gpb:on -idr_interval 0 -
GopRefDist 4 -NumRefFrame 4 -NumRefActiveP 1 -NumRefActiveBL0 1 -NumRefActiveBL1
1 -bref -NumFramePartitions 4 -AdaptiveSearch -SearchWindow 5 -ForceCtuSplit -
FastIntraMode -l 1 -EncodedOrder -MVPBlockSize 1

9.2.4 TU7 transcoding
./sample_hevc_fei -i::h264 $AVC_INPUT -o $FEI_TU7_STREAM -preenc 4 –encode -qp
$QP DisableQPOffset -g 32 -gpb:on -idr_interval 0 -GopRefDist 4 -NumRefFrame 4 -
NumRefActiveP 1 -NumRefActiveBL0 1 -NumRefActiveBL1 1 -bref -NumFramePartitions
4 -AdaptiveSearch -SearchWindow 5 -ForceCtuSplit -FastIntraMode -l 1 -
EncodedOrder -MVPBlockSize 1

9.3 DSO + ENCODE

9.3.1 TU4 transcoding
./sample_hevc_fei_abr -i::h264 $AVC_INPUT -o $ABR_TU4_STREAM -dso
$5Mb_DSO_STREAM -qp $QP -DisableQPOffset -g 32 -gpb:on -idr_interval 0 -
GopRefDist 4 -NumRefFrame 4 -NumRefActiveP 3 -NumRefActiveBL0 3 -NumRefActiveBL1
1 -bref -l 1 -DSOMVPBlockSize 7 -NumFramePartitions 4

https://github.com/Intel-Media-SDK/MediaSDK/tree/mss2018_r2/samples
https://github.com/Intel-Media-SDK/MediaSDK/tree/mss2018_r2/doc/samples

78 HEVC FEI overview

9.3.2 TU7 transcoding
./sample_hevc_fei_abr -i::h264 $AVC_INPUT -o $ABR_TU7_STREAM -dso
$5Mb_DSO_STREAM -qp $QP -DisableQPOffset -g 32 -gpb:on -idr_interval 0 -
GopRefDist 4 -NumRefFrame 4 -NumRefActiveP 1 -NumRefActiveBL0 1 -NumRefActiveBL1
1 -bref -l 1 -DSOMVPBlockSize 7 -NumFramePartitions 4 -ForceCtuSplit -
FastIntra:I -FastIntra:P -FastIntra:B

9.4 X264 ENCODING
./x264-r2762-90a61ec --input-res $WIDTHx$HEIGHT --bitrate 40000 --frames
$NFRAMES --fps $FPS --no-mbtree -I 32 --no-fast-pskip --no-dct-decimate --no-
scenecut --ref 4 --bframes 3 --b-pyramid normal --b-adapt 0 --open-gop --weightp
0 --no-weightb --ipratio 1.4 --pbratio 1.3 --merange 24 --me umh --subme 11 --
partitions all --trellis 0 --no-psy --psnr --deblock 0:0 -o $AVC_INPUT
$YUV_INPUT

9.5 HM ENCODING

9.5.1 auxiliary stream for DSO
#======== File I/O =====================
#BitstreamFile : str.bin
#ReconFile : rec.yuv

#======== Profile ================
Profile : main

#======== Unit definition ================
MaxCUWidth : 32
MaxCUHeight : 32
MaxPartitionDepth : 3
QuadtreeTULog2MaxSize : 5
QuadtreeTULog2MinSize : 2
QuadtreeTUMaxDepthInter : 3
QuadtreeTUMaxDepthIntra : 3

#======== Coding Structure =============
IntraPeriod : 32
DecodingRefreshType : 1
GOPSize : 32
ReWriteParamSetsFlag : 1

IntraQPOffset : -1
LambdaFromQpEnable : 1

Frame1: B 4 0 0.0 0.0 0 0 1.0 0 0 0 1 1 -4 0
Frame2: B 2 1 0.0 0.0 0 0 1.0 0 0 0 1 2 -2 2 1 2 2 1 1
Frame3: B 1 2 0.0 0.0 0 0 1.0 0 0 0 1 3 -1 1 3 1 1 3 1 1 1
Frame4: B 3 2 0.0 0.0 0 0 1.0 0 0 0 2 3 -1 -3 1 1 -2 4 1 1 1 0
Frame5: B 8 0 0.0 0.0 0 0 1.0 0 0 0 3 3 -4 -6 -8 1 -5 4 1 1 1 0
Frame6: B 6 1 0.0 0.0 0 0 1.0 0 0 0 3 4 -2 -4 -6 2 1 2 4 1 1 1 1
Frame7: B 5 2 0.0 0.0 0 0 1.0 0 0 0 2 4 -1 -3 1 3 1 1 5 1 1 0 1 1
Frame8: B 7 2 0.0 0.0 0 0 1.0 0 0 0 3 4 -1 -3 -5 1 1 -2 5 1 1 1 1 0
Frame9: B 12 0 0.0 0.0 0 0 1.0 0 0 0 3 3 -4 -6 -8 1 -5 5 1 1 0 1 0
Frame10: B 10 1 0.0 0.0 0 0 1.0 0 0 0 3 4 -2 -4 -6 2 1 2 4 1 1 1 1
Frame11: B 9 2 0.0 0.0 0 0 1.0 0 0 0 2 4 -1 -3 1 3 1 1 5 1 1 0 1 1
Frame12: B 11 2 0.0 0.0 0 0 1.0 0 0 0 3 4 -1 -3 -5 1 1 -2 5 1 1 1 1 0
Frame13: B 16 0 0.0 0.0 0 0 1.0 0 0 0 3 3 -4 -6 -8 1 -5 5 1 1 0 1 0
Frame14: B 14 1 0.0 0.0 0 0 1.0 0 0 0 3 4 -2 -4 -6 2 1 2 4 1 1 1 1
Frame15: B 13 2 0.0 0.0 0 0 1.0 0 0 0 2 4 -1 -3 1 3 1 1 5 1 1 0 1 1
Frame16: B 15 2 0.0 0.0 0 0 1.0 0 0 0 3 4 -1 -3 -5 1 1 -2 5 1 1 1 1 0
Frame17: B 20 0 0.0 0.0 0 0 1.0 0 0 0 3 3 -4 -6 -8 1 -5 5 1 1 0 1 0
Frame18: B 18 1 0.0 0.0 0 0 1.0 0 0 0 3 4 -2 -4 -6 2 1 2 4 1 1 1 1
Frame19: B 17 2 0.0 0.0 0 0 1.0 0 0 0 2 4 -1 -3 1 3 1 1 5 1 1 0 1 1
Frame20: B 19 2 0.0 0.0 0 0 1.0 0 0 0 3 4 -1 -3 -5 1 1 -2 5 1 1 1 1 0

HEVC FEI overview 79

Frame21: B 24 0 0.0 0.0 0 0 1.0 0 0 0 3 3 -4 -6 -8 1 -5 5 1 1 0 1 0
Frame22: B 22 1 0.0 0.0 0 0 1.0 0 0 0 3 4 -2 -4 -6 2 1 2 4 1 1 1 1
Frame23: B 21 2 0.0 0.0 0 0 1.0 0 0 0 2 4 -1 -3 1 3 1 1 5 1 1 0 1 1
Frame24: B 23 2 0.0 0.0 0 0 1.0 0 0 0 3 4 -1 -3 -5 1 1 -2 5 1 1 1 1 0
Frame25: B 28 0 0.0 0.0 0 0 1.0 0 0 0 3 3 -4 -6 -8 1 -5 5 1 1 0 1 0
Frame26: B 26 1 0.0 0.0 0 0 1.0 0 0 0 3 4 -2 -4 -6 2 1 2 4 1 1 1 1
Frame27: B 25 2 0.0 0.0 0 0 1.0 0 0 0 2 4 -1 -3 1 3 1 1 5 1 1 0 1 1
Frame28: B 27 2 0.0 0.0 0 0 1.0 0 0 0 3 4 -1 -3 -5 1 1 -2 5 1 1 1 1 0
Frame29: I 32 -1 0.0 0.0 0 0 1.0 0 0 0 0 3 -4 -6 -8 1 -5 5 1 1 0 1 0
Frame30: B 30 1 0.0 0.0 0 0 1.0 0 0 0 3 4 -2 -4 -6 2 1 2 4 1 1 1 1
Frame31: B 29 2 0.0 0.0 0 0 1.0 0 0 0 2 4 -1 -3 1 3 1 1 5 1 1 0 1 1
Frame32: B 31 2 0.0 0.0 0 0 1.0 0 0 0 3 4 -1 -3 -5 1 1 -2 5 1 1 1 1 0

#=========== Motion Search =============
FastSearch : 1
SearchRange : 512
ASR : 0
MinSearchWindow : 96
BipredSearchRange : 4
HadamardME : 1
FEN : 1
FDM : 1

#=========== Deblock Filter ============
LoopFilterOffsetInPPS : 1
LoopFilterDisable : 0
LoopFilterBetaOffset_div2 : 0
LoopFilterTcOffset_div2 : 0
DeblockingFilterMetric : 0

#=========== Misc. ============
InternalBitDepth : 8

#=========== Coding Tools =================
SAO : 0
AMP : 0
TransformSkip : 0
TransformSkipFast : 0
SAOLcuBoundary : 0

#============ Slices ================
SliceMode : 0
SliceArgument : 1500
LFCrossSliceBoundaryFlag : 1

#============ PCM ================
PCMEnabledFlag : 0
PCMLog2MaxSize : 5
PCMLog2MinSize : 3
PCMInputBitDepthFlag : 1
PCMFilterDisableFlag : 0

#============ Tiles ================
TileUniformSpacing : 0
NumTileColumnsMinus1 : 0
NumTileRowsMinus1 : 0
LFCrossTileBoundaryFlag : 1

#============ WaveFront ================
WaveFrontSynchro : 0

#=========== Quantization Matrix =================
ScalingList : 0

#============ Lossless ================
TransquantBypassEnableFlag : 0
CUTransquantBypassFlagForce: 0

#============ Rate Control ======================
RateControl : 1

80 HEVC FEI overview

TargetBitrate : 5000000
KeepHierarchicalBit : 2
LCULevelRateControl : 0
RCLCUSeparateModel : 1
InitialQP : 0
RCForceIntraQP : 0

HEVC FEI overview 81

10 APPENDIX E. STREAM INFORMATION

Name: Beauty
Description: Closeup on female face, hair waving around. Black background
Source: http://ultravideo.cs.tut.fi/#testsequences, framerate conversion from 120 fps to 60 fps
Copyright: Digiturk

Name: big_buck_bunny
Description: Animation
Source: https://media.xiph.org/video/derf
Copyright: Blender Foundation / www.bigbuckbunny.org

http://ultravideo.cs.tut.fi/#testsequences

82 HEVC FEI overview

Name: blue_sky
Description: Top of two trees against blue sky. Camera rotation.
Source: https://media.xiph.org/video/derf
Copyright:

Name: Bosphorus
Description: Zoomed in yacht, bridge on background. Panning right
Source: http://ultravideo.cs.tut.fi/#testsequences, framerate conversion from 120 fps to 60 fps
Copyright: Digiturk

http://ultravideo.cs.tut.fi/#testsequences

HEVC FEI overview 83

Name: bq_terrace
Description: The camera pans in a diagonal direction from a terrace to the bridge. Plenty of vehicles
moving on a bridge, and below the bridge are the water.
Source:
Copyright: NTT DOCOMO Inc.

Name: crowd_run
Description: A crowd of people running together, with big trees and the blue sky as the background.
Source: https://media.xiph.org/video/derf
Copyright: Sveriges Television AB (SVT), Sweden

84 HEVC FEI overview

Name: ducks_take_off
Description: Ducks are taking of water creating ripples effect.-
Source: https://media.xiph.org/video/derf
Copyright: Sveriges Television AB (SVT), Sweden

Name: elephants_dream
Description: Animation
Source: https://media.xiph.org/video/derf
Copyright: Blender Foundation / Netherlands Media Art Institute / www.elephantsdream.org

HEVC FEI overview 85

Name: HoneyBee, HoneyBee_fade25, HoneyBee_fade50, HoneyBee_fade100
Description: Bee harvesting flowers
Source: http://ultravideo.cs.tut.fi/#testsequences, framerate conversion from 120 fps to 60 fps
Copyright: Digiturk

Name: in_to_tree
Description: Camera approaching an old castle building and a tree next to it.-
Source: https://media.xiph.org/video/derf
Copyright: Sveriges Television AB (SVT), Sweden

http://ultravideo.cs.tut.fi/#testsequences

86 HEVC FEI overview

Name: Jockey, Jockey_fade25, Jockey_fade50, Jockey_fade100
Description: Horse racing with camera panning to the left to follow
Source: http://ultravideo.cs.tut.fi/#testsequences, framerate conversion from 120 fps to 60 fps
Copyright: Digiturk

Name: kimono
Description: A woman walking slowly toward the camera in front of the woods. -
Source:
Copyright: Tokyo Institute of Technology, Nakajima Laboratory

http://ultravideo.cs.tut.fi/#testsequences

HEVC FEI overview 87

Name: old_town_cross
Description: Panning view over the old town. Detailed houses, water and moving cars.-
Source: https://media.xiph.org/video/derf
Copyright: Sveriges Television AB (SVT), Sweden

Name: park_joy
Description: People are running in front of trees during a left to right camera movement.-
Source: https://media.xiph.org/video/derf
Copyright: Sveriges Television AB (SVT), Sweden

88 HEVC FEI overview

Name: park_scene
Description: People cycling in park. Panning right.-
Source:
Copyright: Tokyo Institute of Technology, Nakajima Laboratory

Name: pedestrian_area
Description: Shot of a pedestrian area. Low camera position, people pass by very close to the camera.
Static camera.
Source: https:/media.xiph.org/video/derf
Copyright:

HEVC FEI overview 89

Name: ReadySteadyGo
Description: Horse racing track, riders getting ready for launch. The gates open and horses are
running to the left
Source: http://ultravideo.cs.tut.fi/#testsequences, framerate conversion from 120 fps to 60 fps
Copyright: Digiturk

Name: riverbed
Description: Riverbed seen through the water.-
Source: https:/media.xiph.org/video/derf
Copyright:

http://ultravideo.cs.tut.fi/#testsequences

90 HEVC FEI overview

Name: rush_hour
Description: Many cars moving slowly, high depth of focus. Fixed camera.-
Source: https:/media.xiph.org/video/derf
Copyright:

Name: station
Description: View from a bridge to railway station. Evening shot. Long zoom out. Many details, regular
structures (tracks).
Source: https:/media.xiph.org/video/derf
Copyright:

HEVC FEI overview 91

Name: sunflower
Description: One bee at the sunflower, small color differences and very bright yellow. Fixed camera,
small global motion.
Source: https:/media.xiph.org/video/derf
Copyright:

Name: tears-of-steel
Description: -Movie
Source: https:/media.xiph.org/video/derf
Copyright: Blender Foundation / mango.blender.org

92 HEVC FEI overview

Name: TouchDownPass
Description: American football.
Source: https:/media.xiph.org/video/derf, conversion from 422 to 420
Copyright: NTIA/ITS

Name: tractor, tractor_fade25, tractor_fade50, tractor_fade100
Description: A tractor in a field. Whole sequence contains parts that are very zoomed in and a total
view. Camera is following the tractor, chaotic object movement, structure of a harvested field.
Source: https:/media.xiph.org/video/derf
Copyright:

HEVC FEI overview 93

Name: YachtRide
Description: Zoomed in yacht moves away from shot. Wavy water
Source: http://ultravideo.cs.tut.fi/#testsequences, framerate conversion from 120 fps to 60 fps
Copyright: Digiturk

http://ultravideo.cs.tut.fi/#testsequences

94 HEVC FEI overview

LEGAL DISCLAIMER

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,

EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS

GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR

SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR

IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR

WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR

INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR

INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A

SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked

"reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility

whatsoever for conflicts or incompatibilities arising from future changes to them. The information here

is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which

may cause the product to deviate from published specifications. Current characterized errata are

available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before

placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel

literature, may be obtained by calling 1-800-548-4725, or by visiting Intel's Web Site.

MPEG is an international standard for video compression/decompression promoted by ISO.
Implementations of MPEG CODECs, or MPEG enabled platforms may require licenses from various
entities, including Intel Corporation.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in
the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2018, Intel Corporation. All Rights reserved.

http://www.intel.com/

HEVC FEI overview 95

OPTIMIZATION NOTICE

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for

optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and

SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or

effectiveness of any optimization on microprocessors not manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with Intel

microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel

microprocessors. Please refer to the applicable product User and Reference Guides for more

information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

96 HEVC FEI overview

POST-PATCH DISCLAIMER

The benchmark results reported below may need to be revised as additional testing is conducted. The

results depend on the specific platform configurations and workloads utilized in the testing, and may not

be applicable to any particular user’s components, computer system or workloads. The results are not

necessarily representative of other benchmarks and other benchmark results may show greater or

lesser impact from mitigations.

HEVC FEI overview 97

Software and workloads used in performance tests may have been optimized for performance only on

Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific

computer systems, components, software, operations and functions. Any change to any of those factors

may cause the results to vary. You should consult other information and performance tests to assist you

in fully evaluating your contemplated purchases, including the performance of that product when

combined with other products. For more information go to www.intel.com/benchmarks.

http://www.intel.com/benchmarks

